研究生: |
林昀萱 Lin, Yun-Hsuan |
---|---|
論文名稱: |
藥物刺激磁振造影之絕對定量方法 An Absolute Quantification Method for Pharmacological MRI |
指導教授: |
王福年
Wang, Fu-Nien |
口試委員: |
黃騰毅
林益如 蔡尚岳 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 48 |
中文關鍵詞: | 血管空間佔據 、大腦血容量 、藥物刺激磁振造影 、奈米氧化鐵粒子 |
外文關鍵詞: | VASO, cerebral blood volume, phMRI, MION |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藥物刺激的功能性磁振造影(Pharmacological MRI, phMRI)之研究是利用連續動態的造影方式,觀察刺激藥物所誘發的血液動力學反應。傳統的研究方法是將奈米氧化鐵(iron oxide nanoparticles)對比劑打入生物體內,由連續造影所得到的時間訊號曲線中求得相對大腦血容量(relative cerebral blood volume, rCBV),並由此評估藥物刺激對神經功能的影響。然而,對於藥物成癮方面的研究,必須得到大腦血容量的絕對定量資訊以評估不同個體之間的差異及進行較長期的後續追蹤。
在本論文之研究中,我們結合將參數最佳化後的血管空間佔據(Vascular-Space Occupancy, VASO)方法及藥物刺激的功能性磁振造影技術,並得到高解析度的多切面絕對定量之大腦血容量,並應用在甲基安非他命(methamphetamine, mAMPH)刺激的大鼠模型上。
Pharmacological MRI (phMRI) studies utilize dynamic imaging methods to observe the drug induced hemodynamic response. Conventionally, the relative cerebral blood volume (rCBV) was obtained from the time-intensity curve after administration of iron oxide nanoparticles, and the synaptic function provoked by pharmaceutical compounds can be estimated. However, for drug-addiction investigation, absolute quantification of phMRI could benefit inter-subject comparison and longitudinal follow-up.
In this study, we aim to combine a modified Vascular-Space Occupancy (VASO) method and the phMRI technique to acquire high-resolution multi-slice absolute quantification of cerebral blood volume (aCBV), and applied for methamphetamine (mAMPH) challenged phMRI on a rat model.
References
1. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990. 87(24): p. 9868-72.
2. Chen, Y.I., et al., Electrical stimulation modulates the amphetamine-induced hemodynamic changes: an fMRI study to compare the effect of stimulating locations and frequencies on rats. Neurosci Lett, 2008. 444(2): p. 117-21.
3. Sulzer, D., et al., Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci, 1995. 15(5 Pt 2): p. 4102-8.
4. Chen, Y.C., et al., Improved mapping of pharmacologically induced neuronal activation using the IRON technique with superparamagnetic blood pool agents. J Magn Reson Imaging, 2001. 14(5): p. 517-24.
5. Ren, J., et al., Dopaminergic response to graded dopamine concentration elicited by four amphetamine doses. Synapse, 2009. 63(9): p. 764-72.
6. Ibaraki, M., et al., Quantification of cerebral blood flow and oxygen metabolism with 3-dimensional PET and 15O: validation by comparison with 2-dimensional PET. J Nucl Med, 2008. 49(1): p. 50-9.
7. Cenic, A., et al., Cerebral blood volume and blood flow at varying arterial carbon dioxide tension levels in rabbits during propofol anesthesia. Anesth Analg, 2000. 90(6): p. 1376-83.
8. Adam, J.F., et al., Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography. J Cereb Blood Flow Metab, 2003. 23(4): p. 499-512.
9. Grandin, C.B., et al., Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage, 2005. 26(2): p. 525-35.
10. Rijbroek, A., et al., Hemodynamic changes in ipsi- and contralateral cerebral arterial territories after carotid endarterectomy using positron emission tomography. Surg Neurol, 2009. 71(6): p. 668-76, discussion 676.
11. Lin, W., et al., Quantitative magnetic resonance imaging in experimental hypercapnia: improvement in the relation between changes in brain R2 and the oxygen saturation of venous blood after correction for changes in cerebral blood volume. J Cereb Blood Flow Metab, 1999. 19(8): p. 853-62.
12. Payen, J.F., et al., Regional cerebral blood volume response to hypocapnia using susceptibility contrast MRI. NMR Biomed, 2000. 13(7): p. 384-91.
13. Dunn, J.F., et al., Monitoring angiogenesis in brain using steady-state quantification of DeltaR2 with MION infusion. Magn Reson Med, 2004. 51(1): p. 55-61.
14. Perles-Barbacaru, A.T. and H. Lahrech, A new Magnetic Resonance Imaging method for mapping the cerebral blood volume fraction: the rapid steady-state T1 method. J Cereb Blood Flow Metab, 2007. 27(3): p. 618-31.
15. Lu, H., et al., Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med, 2005. 54(6): p. 1403-11.
16. Lu, H., et al., Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med, 2003. 50(2): p. 263-74.
17. Lu, H. and P.C. van Zijl, A review of the development of Vascular-Space-Occupancy (VASO) fMRI. Neuroimage, 2012.
18. Shen, T., et al., Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn Reson Med, 1993. 29(5): p. 599-604.
19. Kai-Ling Lu, F.-N.W., Modifications and accuracy evaluations of vascular space occupancy method for measuring absolute cerebral blood volume. 2011: p. 55.
20. Paxinos, G. and C. Watson, The rat brain in stereotaxic coordinates. 4th ed1998, San Diego: Academic Press.
21. Del Bigio, M.R., et al., Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus. Fluids Barriers CNS, 2011. 8: p. 22.
22. Tropres, I., et al., Vessel size imaging. Magn Reson Med, 2001. 45(3): p. 397-408.
23. Pathak, A.P., Magnetic resonance susceptibility based perfusion imaging of tumors using iron oxide nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2009. 1(1): p. 84-97.
24. Abbott, N.J., et al., Structure and function of the blood-brain barrier. Neurobiol Dis, 2010. 37(1): p. 13-25.
25. Yu, O., et al., Susceptibility-based MRI contrast of the CSF by intravascular superparamagnetic nanoparticles. MAGMA, 1995. 3(3-4): p. 169-72.