簡易檢索 / 詳目顯示

研究生: 阮登科
Nguyen, Dang Khoa
論文名稱: 有向圖的路徑餘調與布朗函子
Path cohomology of digraphs as a Brown functor
指導教授: 廖軒毅
Liao, Hsuan-Yi
口試委員: 鄭志豪
Teh, Jyh Haur
阮志豪
Yuen, Chi Ho
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 28
中文關鍵詞: 布朗表現路徑餘調有向圖代數拓撲
外文關鍵詞: Brown Representation, Path Cohomology, Directed Graph, Algebraic Topology
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們證明有限定向圖的零階和一階路徑同調群是布朗函子。


    In this paper, we prove that the zeroth and first path cohomology groups of a finite directed graph are Brown functors.

    Contents Acknowledgements 3 1 Introduction 4 2 Path cohomology of digraphs with coefficients in Z 7 2.1 Digraphs and homotopy of digraphs 7 2.2 Path chain complex on finite sets 10 2.3 Path homology of digraphs 12 2.4 Path cohomology of digraphs 15 3 Path cohomology as a Brown functor 19 3.1 Brown functor and main theorem 19 3.2 Proof of main theorem 21 References 27

    References
    [1] J. F. Adams. “A variant of E. H. Brown’s representability theorem”. In: Topology 10 (1971), pp. 185–198. doi: 10.1016/0040-9383(71)90003-6.
    [2] Alexander Grigor’yan, Yuri Muranov, and Shing-Tung Yau. “On a cohomology of digraphs and Hochschild cohomology”. In: J. Homotopy Relat. Struct. 11.2 (2016), pp. 209–230. doi: 10.1007/s40062-015-0103-1.
    [3] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. “Cohomology of digraphs and (undirected) graphs”. In: Asian J. Math. 19.5 (2015), pp. 887–931. doi: 10.4310/AJM. 2015.v19.n5.a5.
    [4] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. “Homologies of path complexes and digraphs”. In: (July 2012). doi: 10.48550/ARXIV.1207.2834. arXiv: 1207.2834 [math.CO].
    [5] Alexander Grigor’yan, Yong Lin, Yuri Muranov, and Shing-Tung Yau. “Homotopy theory for digraphs”. In: Pure Appl. Math. Q. 10.4 (2014), pp. 619–674. doi: 10.4310/PAMQ.2014.v10. n4.a2.
    [6] Zachary McGuirk and Byungdo Park. “Brown representability for directed graphs”. In: (Mar. 2020). doi: 10.48550/ARXIV.2003.07426. arXiv: 2003.07426 [math.CT].
    [7] E. Riehl. Category theory in context. Aurora: Dover modern math originals. Dover Publications, 2017. isbn: 978-0-486-82080-4

    QR CODE