簡易檢索 / 詳目顯示

研究生: 林建安
論文名稱: 應用於增進行走平衡感之能量收集與隨機震動驅動電路
Battery-free random noise vibration generator IC for walking balance enhancement
指導教授: 徐永珍
口試委員: 劉堂傑
張翔
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 平衡感
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 老人跌倒意外一直是令養護機構為之頭痛的議題,其主要原因來自平衡感的敏銳程度下降。應用在膚覺上的隨機共振提升平衡感能力研究近年來已相當成熟,實驗數據顯示隨機共振現象能提升微弱訊號的感測。當施加一個隨機震動於腳底,人體偵測身體傾斜的能力可被提升,進而提升平衡感的敏銳程度。本篇論文研究利用隨機共振的概念,整合能量再生與致動器驅動,發展出一套自體行走發電同時提升平衡感能力的裝置,降低跌倒意外的發生。
    內文說明壓電換能器與壓電致動器的選取、電性模型的建立。以及如何利用AC/DC與DC/DC電路儲存壓電材料的產生的能量,供應給致動器驅動電路產生具有隨機亂數強度的震動,最終達成膚覺隨機共振來提升行進時的平衡感。
    本晶片透過國家晶片設計中心,以TSMC 2P4M 0.35μm CMOS 標準製程實現,晶片面積為1.38mm×1.26mm。


    第一章序論 1-1 研究背景與發展現況 1-1-1 人體自我平衡機 1-1-2 隨機共振理論 1-1-3 人體平衡感提升實驗 1-1-4 系統驗證實驗 1-2 研究動機 1-3 論文章節架構 第二章系統架構概述 2-1 外部元件介紹 2-1-1 壓電換能器 (PZT Energy Transducer) 2-1-2 壓電制動器 (PZT Actuator) 2-2 能量回收系統 2-3 致動器驅動系統 2-3-1 訊號調變機制 第三章子系統分析與實現 3-1 AC/DC 3-2 休眠控制電路 3-3 低壓降穩壓器 (Low Dropout Regulator) 3-3-1 小訊號分析 3-3-2 常用補償技巧 3-3-3 本文LDR 電路設計 3-3-4 暫態特性提升電路 3-4 帶差參考電壓源 (Bandgap Reference) 3-5 時脈產生電路 3-6 隨機雜訊產生電路 3-7 致動器驅動訊號控制電路 3-8 固定轉導偏壓電路 第四章電路模擬與晶片佈局 4-1 能量輸入狀態 4-1-1 模擬結果 4-2 雜訊振動驅動電路 4-3 電路佈局 第五章量測考量及結果 5-1 量測儀器介紹 5-2 環境架設 5-3 量測結果 5-4 問題討論 第六章總結 參考文獻

    [1] J. M. Hausdorff, D. A. Rios, H. K. Edelberg, “Gait variability and fall risk in community-living older adults: a 1-year prospective study,” Archives of Physical Medicine and Rehabilitation, vol. 82, pp. 1050-6, Aug. 2001.
    [2] B. H. Alexander, F. P. Rivara, M. E. Wolf, “The cost and frequency of hospitalization for fall-related injuries in older adults,” American Journal of Public Health, vol. 82(7), pp. 1020–3, 1992.
    [3] A. Sixsmith and N. Johnson, “A Smart Sensor to Detect the Falls of the Elderly,” IEEE Pervasive Computing, vol. 3, no. 2, pp. 42-47, 2004.
    [4] P. Deetjen, E. J. Speckmann, “實用生理學”, 合記圖書出版社, 1994.
    [5] P. Hanggi, “Stochastic resonance in biology: how noise can enhance detection of weak signals and help improve biological information processing.” Chemphyschem, vol. 3, pp. 285-290, 2002
    [6] R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, “Stochastic resonance in climatic change,” Tellus, vil. 34, pp. 10-16, 1982.
    [7] E. Simonotto, M. Riani, C. Seife, M. Roberts, J. Twitty, and F. Moss ‘‘Visual perception of stochastic resonance,’’ Physical review letters, vol. 78, pp. 1186-1189, 1997.
    [8] J. J. Collins, T. T. Imhoff, P. Grigg, “Noise-Mediated Enhancements and Decrements in Human Tactile Sensation,” Physical Review E, Vol. 56, pp. 923-926, 1997.
    [9] W. Liu, L. A. Lipsitz, “Noise-enhanced vibrotactile sensitivity in older adults, patients with stroke, and patients with diabetic neuropathy.” Arch Phys Med Rehabil, vol. 83, pp. 171-176, 2002.
    [10] W. Cari, M. Lawrence, R. Chua and J. Timothy “Touch Noise Increases Vibrotactile Sensitivity in Old and Young,” Psychological Science, vol. 16, pp. 313, 2005.
    [11] D. Nozaki, D. J. Mar, P. Grigg, J. J. Collins, “Effects of Colored Noise on Stochastic Resonance in Sensory Neurons,” Physical review letters, vol. 82, pp. 2402-2405, 1999.
    [12] P. M. Kennedy, J. T. Inglis, ”Distribution and behaviour of glabrous cutaneous receptors in the human foot sole,” Journal of Physiology, vol. 538, pp. 995-1002, 2002.
    [13] J. M. Hijmansa, J. H. B. Geertzena, B. Schokkerd and K. Postemaa ” Development of vibrating insoles,” International Journal of Rehabilitation Research, Vol. 30, no. 4, 2007.
    [14] T. Starner “Human-powered wearable computing,” IBM Systems Journal, vol. 35, no. 3&4, 1996.
    [15] J. M. Donelan, Q. Li, V. Naing, J. A. Hoffer, D. J. Weber, A. D. Kuo, “Biomechanical Energy Harvesting : Generating Electricity During Walking with Minimal User Effort,” Science, vol. 319, 2008.
    [16] D. Kuo “Harvesting Energy by Improving the Economy of Human Walking,” Science, vol. 309, 2005.
    [17] N. S. Shenck, J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” Micro, IEEE, vol. 21, no. 3, pp. 30-42, 2001.
    [18] K. N. Leung and P. K. T. Mok, “Analysis of Multistage Amplifier–Frequency Compensation,” Member, IEEE, vol. 48, no. 9, pp. 1041-1056, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE