簡易檢索 / 詳目顯示

研究生: 牟善群
Mou, Shan-Chun
論文名稱: 以脈衝式熱管做爲增加太陽能模組效率暨太陽能熱水供應之研究
Improve the Efficiency of Solar Panel and Get Sun-Heated Water by Pulsed Heat Pipes
指導教授: 林唯耕
Lin, Wei-Keng
陳紹文
Chen, Shao-Wen
口試委員: 黃筧
鄒蘊明
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 矽基太陽能電池脈衝式熱管相變化材料潛熱太陽能熱水器
外文關鍵詞: Silicon-based solar panel, Pulsed heat pipe, Phase-changed material, Latent heat, Solar water heater
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今市售太陽能模組的發展已經陷入了瓶頸,究其原因為能源轉換效率的停滯不前。目前商用太陽能電池轉換效率無法有顯著提升除了是材料選擇的問題,還有受光照時大量的熱累積在太陽能電池導致發電功率無法上升。
    為了解決上文所提的餘熱問題,我們使用實驗室開發的脈衝式熱管(PHP)配合相變化材料(PCM)直接對縮小尺寸(68x55cm2)的太陽能模組進行改裝,同時在控制成本下設計了三種散熱方案:第一種方案為單純使用兩組PHP將白天太陽能模組多餘的熱移到PCM儲存槽中,到晚上在讓其自然冷卻;第二種方案是在太陽能模組背面和增加的蓋板間附上PCM吸熱,PHP則埋於其中,之後的移熱模式如同方案一;第三種方案為流動水在太陽能模組背面和蓋板間吸熱使其成為另類的太陽能熱水器加熱部,PHP則埋在其中,之後移熱模式也如同方案一。
    在使用小尺寸68x55cm2的太陽能模組進行的三種散熱方案中,方案一使用兩組PHP的太陽能模組溫度與功率沒有明顯變化,方案二使用PCM與PHP反而增加太陽能模組溫度造成功率下降2.4%,方案三使用流動水與PHP能夠降低太陽能模組溫度約7℃並提升太陽能模組發電功率約15%,為最佳選擇,同時也可以產生家用熱水。在確認方案三能提升最多功率後,對正常尺寸(170x102cm2)之市售太陽能模組進行方案三驗證,發現可提升發電效率約11.2%,確認通過方案三加掛散熱模組能讓太陽能模組產生更多的電和適用於家庭的熱水。


    Nowadays, the development of commercial solar panel is in dilemma due to the stagnation of energy transfer rate. The usage of materials and wasted heat caused by sunlight will stop the improvement of solar panel.
    The objective of this study is to increase the power of solar panel by removing heat from it. We design three methods to achieve the goal by the combination of pulsed heat pipe (PHP), phase change material (PCM) and the reduced-size solar panel (68x55cm2). First, only use PHP to remove heat from the back of the solar panel to PCM storage tank at daytime; heat will dissipate at night. Second, attach PCM between the back of solar panel and the additional plate, and PHP is placed into PCM to transfer heat from PCM behind the solar panel to the PCM storage tank at daytime. Third, flowing water between the back of solar panel and the additional plate as the heating part of solar water heater, and PHP is placed into the water to transfer heat from the water behind the solar panel to the PCM storage tank at daytime.
    In the result, the power of solar panel in the first method with two PHPs remains the same; the power of solar panel in the second method with PCM and PHP reduces due to the temperature rising; the third method with flowing water and PHP is the best; it can increase 15% of power. Finally, we use the third method on the normal-size (170x102cm2) solar panel to check the versatility of the method; it can increase 11.2% of power.

    摘要 II ABSTRACT III 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號表 XV 1. 緒論 - 1 - 1-1 研究背景與動機 - 1 - 1-2 矽基太陽能電池 - 3 - 1-3 傳統毛細力熱管 - 5 - 1-4 研究方法及流程 - 8 - 2. 脈衝式熱管(PHP) - 10 - 2-1 脈衝式熱管技術介紹 - 10 - 2-2 文獻回顧 - 13 - 2-3 脈衝式熱管理論基礎分析 - 22 - 2-4 脈衝式熱管熱傳分析 - 23 - 2-5 脈衝式熱管性能參數 - 23 - 2-5-1 工作流體 - 23 - 2-5-2 流體填充率(Filling Ratio, FR) - 24 - 2-5-3 環路材質與管徑 - 25 - 2-5-4 彎管數量和分佈 - 27 - 2-5-5 傾斜角度(Inclination Angle) - 28 - 2-6 工作流體選擇 - 30 - 2-7 脈衝式熱管製作與填充工作流體方式 - 31 - 3. 實驗設備與實驗設計 - 36 - 3-1 相變化材料(PCM)之選擇 - 36 - 3-2 實驗設備介紹 - 39 - 3-3 散熱方案一設計:小尺寸68X55CM2太陽能模組背板單純使用PHP - 48 - 3-4 散熱方案二設計:小尺寸68X55CM2太陽能模組背板使用PCM與PHP - 51 - 3-5 散熱方案三設計:小尺寸68X55CM2太陽能模組背板使用流動水與PHP - 53 - 3-6 散熱方案三驗證:大尺寸170X102CM2太陽能模組背板使用流動水與PHP - 57 - 4. 實驗結果 - 60 - 4-1 各點溫度比較 - 61 - 4-1-1 散熱方案一:小尺寸68x55cm2太陽能模組背板單純使用PHP - 61 - 4-1-2 散熱方案二:小尺寸68x55cm2太陽能模組背板使用PCM與PHP - 62 - 4-1-3 散熱方案三:小尺寸68x55cm2太陽能模組背板使用流動水與PHP - 63 - 4-1-4 驗證散熱方案三:大尺寸170x102cm2太陽能模組背板使用流動水與PHP - 64 - 4-2 太陽能模組輸出功率比較 - 68 - 4-2-1 散熱方案一:小尺寸68x55cm2太陽能模組背板單純使用PHP - 68 - 4-2-2 散熱方案二:小尺寸68x55cm2太陽能模組背板使用PCM與PHP - 69 - 4-2-3 散熱方案三:小尺寸68x55cm2太陽能模組背板使用流動水與PHP - 69 - 4-2-4 驗證散熱方案三:大尺寸170x102cm2太陽能模組背板使用流動水與PHP - 70 - 5. 結論 - 74 - 參考文獻 - 75 -

    [1] 吳鎮國、林鴻、盧以昕、許仲成、陳欣卉、吳育任,「淺談太陽能電池的原理與應用」,What ‘s fun in EE-台大電機系科普系列,國立台灣大學電機工程學系,2014年4月。
    [2] R.S Gauger, “Heat Transfer Devices.”, US Patent No.2350348, applied 1942, published 1944.
    [3] G.M. Grover, “Evaporation-Condensation Heat Transfer Device.”, U.S. Patent No.3229759, applied 1963, published 1966.
    [4] 魏維瑲,「銀奈米流體於熱管之性能研究」,淡江大學機械與機電工程學系,博士學位論文, 2008.
    [5] H. Ma, “Oscillating Heat Pipe.”, Springer, 2015.
    [6] 廖偉辰,「以脈衝式熱管作為油浸式變電箱設計之研發」,國立清華大學工程與系統科學系,碩士學位論文,中華民國107年7月。
    [7] Khandekar S., Groll M., Charoensawan P., Rittidech S., and Terdtoon P., “Closed and Open Loop Pulsating Heat Pipes.”, 13th International Heat Pipe Conference, 2004.
    [8] M. Suo and P. Griffith, “Two-phase flow in capillary tubes.” Journal of Basic Engineering, vol. 86, pp. 576-582, 1964.
    [9] H. Akachi, “Structure of a heat pipe.”, US Patent No.4921041A, 1990/05/01.
    [10] H. Akachi, “Structure of micro-heat pipe.”, US Patent No.5219020A, 1993/06/15.
    [11] H. Akachi, F. Polasek, and P. Stulc, “Pulsating Heat Pipes.”, Proceedings of 5th International Heat Pipe Symposium, pp. 208-217, 1996.
    [12] S. Maezawa, R. Nakajima, K. Gi, and H. Akachi, “Experimental Study on Chaotic Behavior of Thermohydraulic Oscillation in Oscillating Thermosyphon.”, Proceedings of 5th International Heat Pipe Symposium, pp. 131-137, Australia, 1996.
    [13] T. Wong, B. Tong, S. Lim, and K. Ooi, “Theoretical Modeling of Pulsating Heat Pipes, Proc.”, 11th Int. Heat Pipe Conf. Tokyo, pp. 159-163, 1999.
    [14] M. B. Shafii, A. Faghri, and Y. Zhang, “Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes.”, Journal of Heat Transfer, Vol. 123, pp. 1159-1172, 2001.
    [15] B. Y. Tong, T. N. Wong, and K. T. Ooi, “Closed-loop pulsating heat pipe”, Applied Thermal Engineering, Vol. 21, pp. 1845-1862, 2001/12/01.
    [16] P. Charoensawan, S. Khanekar, M. Groll, and P. Terdton, “Closed Loop Pulsating Heat Pipes Part A: Parametric Experimental Investigations.”, Applied Thermal Engineering, Vol.23, No.16, pp. 2009-2020, 2003.
    [17] S. Khandekar, P. Charoensawan, M. Groll, and P. Terdtoon, “Closed Loop Pulsating Heat Pipes-part B: Visualization and Semi-Empirical Modeling.”, Applied Thermal Engineering, Vol.23, No.16, pp.2021-2033, 2003.
    [18] S. Khandekar, N. Dollinger, and M. Groll, “Understanding Operational Regimes of Closed LoopPulsating Heat Pipes: An Experimental Study.”, Applied Thermal Engineering, Vol.23, No.6, pp. 707-719, 2003.
    [19] S. Khandekar, M. Groll, P. Charoensawan, S. Rittidech, and P. Terdtoon, “Closed and Open Loop Pulsating Heat Pipes.”, 13th International Heat Pipe Conference, 2004.
    [20] B. Holley and A. Faghri, “Analysis of pulsating heat pipe with capillary wick and varying channel diameter.”, International Journal of Heat and Mass Transfer, vol. 48, pp. 2635-2651, 2005/06/01.
    [21] H. B. Ma, M. A. Hanlon, and C. L. Chen, “An investigation of oscillating motion in a miniature pulsating heat pipe.”, Microfluid Nanofluid, pp. 171-179, 2006.
    [22] H. Yang, S. Khandekar, and M. Groll, “Operating limit of closed loop pulsating heat pipe.”, Applied Thermal Engineering, Vol. 28, pp. 49-59, 2008.
    [23] Y. H. Lin, S. W. Kang, and H. L. Chen, “Effect of Silver Nanofluid on Pulsating Heat Pipe Thermal Performance.”, Applied Thermal Engineering, Vol.28, pp. 1312-1317, 2008.
    [24] Z. LIN, S. WANG, and X. WU, “Recent research on pulsating heat pipe.”, Chemical Industry and Engineering Progress, Vol. 10, pp. 11, 2008.
    [25] 徐進良,張明顯,施慧烈,「脈衝熱管中的熱力型脈動現象及試驗測量」,自然科學進展,第14卷,第四期,2004年4月。
    [26] 劉向東,郝英立,「閉式迴圈振盪熱管內氣液兩相流數值模擬」,東南大學學報,第39卷,第五期,2009年9月。
    [27] K. Rama Narasimha, S. N. Sridhara, M. S. Rajagopal, K.N. Seetharamu, “Influence of Heat Input, Working Fluid and Evacuation Level on the Performance of Pulsating Heat Pipe.”, Journal of Applied Fluid Mechanics, Vol. 5, No. 2, pp. 33-42, 2012.
    [28] 莊宇軒,「雙環路PHP均溫板作為解凍用途研發及實驗」,國立清華大學工程與系統科學系,碩士學位論文,中華民國105年7月。
    [29] 黃信輔,「以雙環路PHP設計之熱交換器研發」,國立清華大學工程與系統科學系,碩士學位論文,中華民國106年7月
    [30] R. J. Xu, X. H. Zhang, R. X. Wang, S. H. Xu, and H. S. Wang, “Experimental investigation of a solar collector integrated with a pulsating heat pipe and a compound parabolic concentrator.”, Energy Conversion and Management, Vol. 148, pp. 68-77, 09/15/2017.
    [31] 徐梓恒,「脈衝式熱管應用在太陽能儲熱器之研究與開發」,國立清華大學工程與系統科學系,碩士學位論文,中華民國107年7月。
    [32] S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic, and M. Groll, "Thermofluid dynamic study of flat-plate closed-loop pulsating heat pipes, “Microscale thermophysical engineering.”, Vol. 6, pp. 303-317, 2002.
    [33] Himel Barua, Mohammad Ali, Md. Nuruzzaman, M. Quamrul Islam, Chowdhury M. Feroz, “Effect of filling ratio on heat transfer characteristics and performance of a closed loop pulsating heat pipe.”, 5th BSME International Conference on Thermal Engineering, Procedia Engineering, Vol. 56, pp. 88–95, 2013.
    [34] Robert T. Dobson, Thomas M. Harms, “Lumped Parameter Analysis of Close and Open Oscillatory Heat Pipes.”, 11th International Heat Pipe Conference, pp. 137-142, 1999.
    [35] Z. Lin, S. Wang, J. Huo, Y. Hu, J. Chen, W. Zhang, et al., “Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes.”, Applied Thermal Engineering, Vol. 31, pp. 2221-2229, 2011/10/01.

    QR CODE