研究生: |
陳谷塵 Ku-Chen Chen |
---|---|
論文名稱: |
使用格林函數方法研究狹窄導線半導體的量子傳輸現象 A Study of Quantum Transport in Narrow-Wired Semiconductor by Using the Green's Function Method |
指導教授: |
林叔芽
Shu-Ya Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 格林函數 、量子傳輸 |
外文關鍵詞: | Green’s Function, quantum transport |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用格林函數(Green’s function)計算導線參雜不同類型的雜質或缺陷時,電子電導值的變化。因為研究的對象是小尺寸的導線,所以電子內部的傳輸行為是量子傳輸,與古典的傳輸現象會有很大的不同。論文內所討論的導線包含-(1) 單一個雜質、(2)方形的位能、(3)亂數分布的雜質,其中雜質的位能形式是 函數。先利用薛丁格方程式,解出導線橫向侷限的特徵值及特徵向量。再利用特徵值及特徵向量計算格林函數。而格林函數與穿透機率有關,可計算出穿透機率,接著利用藍道公式(Landauer formula)計算電導值。計算的結果可以得到量子傳輸行為的一些特殊的物理現象。在單一雜質的導線中,可以看到電導值量子化的階梯曲線及受到位能為負的雜質引響,產生凹陷值。方形雜質的導線上則發現,電導值會有共振的現象,與薛丁格方程式處理方形位能井或方形位能障的情況相似。考慮雜質亂數分布導線,取雜質位能為正時,發現電導的波動特性(fluctuation)。這現象可以幫助我們了解一些量子干涉效應。增加一些位能為負的雜質之後,會改變電導值。其中一部分原因是受到準施體能階(quasi-donor level)的影響。我們的計算結果與Bagwell、Kumar等人利用散射矩陣(scattering-matrix)計算電導的研究成果[1,2]相符合。
Green’s Function is used to calculate the conductance in narrow wires which include several types of scatters. The research subjects are narrow wires, so the transport properties of the electrons belong to quantum transport, which is totally different from classic transport. This study discusses about the narrow wires that include: (1) a single scattering center, (2) rectangular potential barrier and (3) random distributed scattering centers. Both repulsive and attractive potentials are considered in each case. The delta function potentials are used for the discrete scattering centers. First, we use the Schrodinger equation to calculate the eigenvalues and eigenfunctions of the confined transverse modes of the narrow wires. Then, we use them to calculate the Green’s function in order to calculate the transmission probability. After that, we use the Landauer formula to calculate conductance. The results display the physical phenomena of quantum transport. The stepwise increases of quantum conductance are found for these wires. For a single attractive defect in the wire, there is a dip in the conductance caused by the existence of the quasi-donor level. For the rectangular barrier in the wire, there are resonances in the conductance which are similar to those of the potential barrier and well in quantum mechanics. For the random positive defects in the wire, there appears fluctuation in the conductance. This phenomenon helps us to understand the quantum interference effects. By changing part of the defects from repulsive to negative, the conductance is modified. There are some dips in the conductance due to the quasi-donor levels. The results are consistent with the work of Bagwell and Kumar [1, 2], who use the Scattering-Matrix to calculate conductance。
1. Philip F. Bagwell, Evanescent modes and scattering in quasi-one dimensional wires, Phys. Rev. B 41, 10354 (1990).
2. Arvind Kumar and Philip F. Bagwell, Evolution of the quantized ballistic conductance with increasing disorder in narrow-wire arrays , Phys. Rev. B 44, 1747 (1991).
3. S. Washburn and R. A. Webb, Adv. Phys. 35, 375(1986).
4. W. J. Skocpol, P. M. Mankiewich, R.E.Howard, L.D.Jackel, D. M. Tennant, A. D. Stone, Universal conductance fluctuations in silicon inversion-layer nanostructures, Phys. Rev. Lett. 56, 2865(1986).
5. H. Van Houlen, B. J. Van Wess, M. G. J. Heijman, and J. P. Andre, Appl. Phys.Lett.49, 1781(1986).
6. G. P. Whittiington, P. C. Main, L. Eaves, R. P. Taylor, S. Thoms, S. P. Beaumont, and C. P. W. Wilkinson, Superlattices Microstruct. (Berlin) 2, 385(1986).
7. S. C. Feng, P. A. Lee, and A. d. Stone, Phys. Rev. Lett. 56, 1960(1986).
8. Y. Imry, Europhys. Lett. 1, 249(1986).
9. P. A. Lee, Physical A 140, 169(1986).
10. A. D. Stone, Phys. Rev. Lett. 54, 2692(1985).
11. P. W. Anderson, Phys. Rev.109, 1492(1958).
12. N. Giordano, Phys. Rev. B 36, 4190(1987).
13. M. Cahay, M. Mclennan, and S. Datta, Conductance of an array of elastic scatters: A scattering-matrix approach, Phys. Rev. B 37, 10125 (1987).
14. E. N. Economou, Green's Functions in Quantum Physics, Springer Series in Solid State Sciences, Vol. 7 (Springer, New York, 2006), pp. 162-164.
15. Samuel S.M. Wong, Computational Methods in Physics & Engineering (Prentice Hall, 1992), pp. 62-64.
16. David K. Ferry, Stephen M. Goodnick, Transport in nanostructures (Cambridge University Press, 1997), pp. 162-164.
17. Supriyo Datta, Quantum transport: Atom to transistor (Cambridge University Press, 2005), pp. 230-233.
18. S. Chaudhuri , S. Bandyopadhyay, and M. Cahay, Spatial distribution of current and Fermi carriers around localized elastic scatters in quantum transport, Phys. Rev. B 45, 11126(1991).
19. Supriyo Datta, Electronic transport in mesoscopic systems (Cambridge University Press, 1995), pp. 1-3.