簡易檢索 / 詳目顯示

研究生: 駱緯世
Wei-Shih Lo
論文名稱: 熱電式紅外線微感測器之設計、分析及製造
Design, Analysis and Fabrication of Thermoelectric Infrared Microsensor
指導教授: 陳榮順
Rongshun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 熱電紅外線微機電
外文關鍵詞: Thermoelectric, Infrared, MEMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 紅外線感測器之應用範圍相當廣泛,無論是國防相關的飛彈導引裝置,商業相關的建築物老化偵測,甚至於民生相關的醫療診斷系統皆有其應用。而使用微機電技術所製造之紅外線感測器不僅價格便宜、體積小易用於系統組裝且性能佳,由於這些優點使得熱型的感測器漸漸取代量子型感測器,成為紅外線感測器研究的主要趨勢;而在四種主要的熱型感測器中,又以熱電式紅外線感測器最具研究潛力。
    因此,本論文提出一利用微機電技術所製造之新型熱電式紅外線感測器,藉由熱電偶懸浮結構隱藏於紅外線吸收薄膜下方的設計方式,製作高填置率、高響應度及低雜訊等效溫差的紅外線感測器。另外,針對熱電偶材料選擇及結構設計部份做相關公式的計算模擬,希望藉由理論分析找出一組較具代表性之感測器性能規格。同時,利用CoventorWare微機電模擬軟體進行感測器暫態熱傳模擬以用於理論計算之比較及等效電路的類比行為。本文並以PSpice電路模擬軟體自行設計感測器後段的訊號處理電路,藉由實驗測試的方法驗證電路的可行性。並使用LabVIEW顯示系統進行電壓輸入轉色階變化的功能,以描繪出待測熱源的溫度輪廓。最後以代工下線的TSMC 0.35 μm 2P4M CMOS 標準製程將感測器元件實現出來,並建立出熱源感測的實驗量測系統以達到紅外線感測的最終目的。


    摘要...........................................................................................................................Ⅰ誌謝..............................................................................................................................Ⅱ目錄..............................................................................................................................Ⅲ圖目錄………………………………………………………………………………..Ⅳ表目錄………………………………………………………………………………..Ⅵ第一章 緒論…………………………………………………………………………1 1.1研究背景與動機…………………………………………………………….1 1.2文獻回顧……………….……..…………………………………………….2 1.2.1紅外線感測器的種類………………………………………………….2 1.2.2熱型紅外線感測器的種類及比較…………...………………………..3 1.2.3熱電式紅外線感測器………………………………………………….5 1.3本文大綱………………………..…………………………………………..7 第二章 系統架構與分析……………………………………………………………8 2.1感測器系統架構…….……………………………………………..………….8 2.2工作原理描述與熱電偶材料選擇………..……………………………..……9 2.3感測器基本性能參數介紹…………………………………………………..12 2.3.1響應度(responsivity)………….………………………………………12 2.3.2雜訊等效功率(Noise Equivalent Power,NEP)………………………13 2.3.3感測度(Detectivity,D)……………………….………………………14 2.3.4歸一化感測度(Normalized detectivity, )……………………….…14 2.4結構設計……………………..………………………………………………15 2.5設計參數選擇………………………………………………………………..21 第三章 製程介紹及光罩設計……….……………...………………………………31 3.1下線製程部份(TSMC 0.35 2P4M CMOS)…………………………………32 3.2自行處理之後製程部份…………………..…………………………………36 3.3光罩設計部份…………….…….……………………………………………39 第四章 感測器熱傳模擬分析及量測電路之設計…………….…………………43 4.1紅外線感測器熱傳暫態模擬分析…………..……………………………43 4.2紅外線感測器等效類比電路模組……………………………..…………50 4.3訊號處理電路設計…….……………………………………..……………57 第五章 實驗結果與討論…………………………………………………….……64 5.1訊號處理電路及顯示系統…………..…………………………….………65 5.2感測器後製程及實驗量測……………………..………………………….74第六章 結論………….……………………………...……………………….……80參考文獻……………………………………………..………………………………82

    [1] I. J. Spiro, “The optimization of an optical missile guidance tracker,” Apply Optical, vol. 8, 1969, pp. 1365-1371.
    [2] L. B. Carpenter, “Long path detection of atmospheric contaminanta,” U. S. Patent 2930893, 1960.
    [3] R. D. Hudson and J. W. Hudson, “The military applications of remote sensing by infrared,” Proc. of the IEEE, vol. 1, no. 63, 1975, pp. 104-128.
    [4] G. J. Weil, “Computer-aided IR analysis of bridge deck delaminations,” Proceedings of the 5th IR information exchange, 1985, pp. 85-93.
    [5] J. Grant, “Intruder Alarms,” Paramount Publishing Ltd., 1996, pp. 112-159.
    [6] W. D. Lawson, S. Nielsen, E. H. Putley and A. S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids, vol. 9, 1959, pp. 325-329.
    [7] S. Borrello and H. Levinstein, “Preparation and properties of mercury-doped germanium,” J. of Appl. Phys., vol. 33, 1962, pp. 2947-2950.
    [8] D. Long and J. L. Schmidt, “Mercury-cadmium telluride and closely related alloys,” Semiconductors and Semimetals, Academic Press, New York, vol. 5, 1970, pp. 175-255.
    [9] W. S. Boyle and G. E. Smith, “Charge coupled semiconductor devices,” Bell System Technical Journal, 1970, pp. 587-593.
    [10] W. Parrish and A. Lockwood, “Characterization of a 32×32 InSb hybrid focal plane,” IEDM Technical Digest, Dec, 1978, pp. 513-516.
    [11] J. S. Shie, Y. M. Chen, M. Ou-Yang and B. C. S. Chou, “Characterization and modeling of metal-film microbolometer,” IEEE J. of MEMS, vol. 5, no. 4, 1996, pp. 298-306.
    [12] K. C. Liddiard, “Thin-film resistance bolometer IR detectors,” Infrared Physics, vol. 24, no. 1, 1984, pp. 57-64.
    [13] M. F. Thompsett, “A Pyroelectric thermal imaging camera tube,” IEEE Trans. Electron Device, vol. 18, Nov, 1972, pp. 1070-1074.
    [14] R. W. Whatmore, “Pyroelectric devices and materials,” Rep. Prog. Phys., vol. 49, 1986, pp. 1335-1386.
    [15] K. Yamashita, A. Murata and M. Okuyama, “Miniaturized infrared sensor using silicon diaphragm based on Golay cell,” Sensors and Actuators A, vol. 66, 1998, pp. 29-32.
    [16] R. Muanghlua, S. Cheirsirikul and S. Supadech, “The Study of Silicon thermopile,” Proceedings, vol. 3, 24-27 Sept, 2000, pp. 226-229.
    [17] J. Muller, V. Baier, U. Dillner, R. Guttich and E. Kessler, “ A novel micromachined 2×128-element linear thermoelectric infrared radiation sensor array,” Proceedings of micro tec2000, VDE World Microtechnologies Congress, Hanover, vol. 1, 25-27 Sept, 2000, pp. 465-469.
    [18] D. Yao, G. Chen and C. J. Kim, “Low temperature eutectic bonding for in-plane type micro thermoelectric cooler,” Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, 11-16 Nov, 2001.
    [19] W. G. Baer, T. L. Hull, K. Najafi and K. D. Wise, “A multiplexed silicon infrared thermal imager, ” Digest IEE Int. Conf. Solid-State Sensors Actuators, San Francisco, USA, June, 1991, pp. 631-634.
    [20] R. Lenggenhager, H. Baltes, J. Peer and M. Forster, “Thermoelectric Infrared Sensors by CMOS Technology,” IEEE Electron Device Letters, vol. 13, no. 9, Sept, 1992.
    [21] A. D. Oliver and K. D. Wise, “A 1024-element bulk-micromachined thermopile infrared imaging array,” Sensors and Actuators, vol. 73, 1999, pp. 222-231.
    [22] K. Liao, R. Chen and B. C. S. Chou, “Analysis and design of thermoelectric infrared microsensor,” Proceedings of 2003 ASME International Mechanical Engineering Congress and Exposition, 16-21 Nov, 2003.
    [23] 李宗昇, “低解析度紅外線影像系統之家庭保全應用,” 國立交通大學光電工程研究所博士論文,民國八十八年。
    [24] B. C. S. Chou and M. Ou-Yang, “Thermopile infrared sensor, thermopile infrared sensors array, and method of manufacturing the same,” U. S. Patent 6335478B1, 2002.
    [25] B. C. S. Chou and J. S. Shie, “An innovative Pirani pressure sensor,” Solid State Sensors and Actuators 1997, vol. 2, 16-19 June, 1997, pp. 1465-1468.
    [26] G. T. A. Kovacs, “Micromachined Transducers sourcebook,” McGraw-Hill, 1998.
    [27] M. J. Madou, “Fundamentals of Microfabrication second edition,” CRC PRESS, 2002.
    [28] 姚志民, 石玉清, “微機電設計模擬軟體CoventorWare研習會,” 國家高速電腦中心,2002.
    [29] R. P. Ribas, N. Bennouri, J. M. Karam and B. Courtois, “Study of Suspended Microstrip and Planar Spiral Inductor Built Using GaAs Compatible Micromachining,” Journal of Solid-State Device and Circuits, vol. 6, no. 1, Feb, 1998, pp. 11-16.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE