研究生: |
許智昕 |
---|---|
論文名稱: |
五軸側銑加工路徑規劃之效能提升 Enhancing the Effectiveness of Tool Path Planning in 5-axis Flank Machining |
指導教授: | 瞿志行 |
口試委員: |
張國浩
林棋瑋 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 五軸側銑 、路徑規劃 、粒子群最佳化 、切削力 、曲面幾何決定刀具分布 、曲面可展開性 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討基於全域搜尋之五軸側銑加工路徑最佳化問題,分別就提高應用價值與計算效能兩方面,進行創新性的研究。首先結合五軸切削力學模型,根據切屑幾何的估算,預測不同刀具位置對應的切削力;並透過刀具位置與軸向的改變,產生較佳的切削力學狀態。將此機制整合至加工路徑規劃的最佳化演算法中,在限制瞬時最大切削力的條件下,以降低曲面加工誤差為目標,經由粒子群演算法求得最佳化刀具路徑。此外提出決定刀具分布位置的方法,根據曲面的扭曲值、邊界弧長差異與平均曲率等三種幾何性質,適當選擇組成加工路徑的刀具位置,藉此改善最佳解的品質。透過模擬結果的驗證,已顯示本研究概念的可行性,不僅有效控制五軸側銑的切削品質,亦能進一步減少曲面加工誤差。最後提出將曲面之可展開性最佳化的方法,實際應用於輪胎模具的製造上,並透過實體切削驗證研究概念的可行性,結果顯示不僅可以在切削誤差上有顯著的改善,亦能提升路徑規劃之計算速度,並提升研究概念的實用性。本研究採用演化計算方法,整合實際切削的物理模型,開啟數學規劃於實際製造的新穎應用。
[1] G. B. Vickers and K. W. Guan (2003),“Ball-Mills Versus End-Mills for Curved Surface Machining,” ASME Journal of Engineering for Industry, Vol. 11, pp. 22-26.
[2] C. H. Chu and J. T. Chen (2006) “Tool Path Planning for 5-Axis Flank Milling with Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 7-8, pp. 707-713.
[3] A. Larue and Y. Altintas (2005) “Simulation of Flank Milling Processes,” International Journal of Machine Tools and Manufacture, vol. 45, pp. 549-559
[4] W. Ferry and Y. Altintas (2008) “Virtual Five-Axis Flank Milling of Jet Engine Impellers - Part I: Mechanics of Five-Axis Flank Milling,” Journal of Manufacturing Science and Engineering, vol. 130, p. 011005.
[5] K. Sonthipermpoon, E. Bohez, H. Hasemann and M. Rautenberg (2010) “The Vibration Behavior of Impeller Blades in the Five-Axis CNC Flank Milling Process,” International Journal of Advanced Manufacturing Technology, vol. 46, pp 1171-1177.
[6] T. S. Lima, C. M. Leea, S. W. Kima and D. W. Leeb (2001) “Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade,” Journal of Materials Processing Technology, Vol. 130-131, pp. 401-406.
[7] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou and T. Tar (1997) “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp.422-436.
[8] X. W. Liu (1995) “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 887-894.
[9] D. M. Tsay and M. J. Her (2001) “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738.
[10] C. Menzel, S. Bedi and S. Mann (2004) “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296.
[11] P.H. Wu, Y.W. Li and C.H. Chu (2008) “Tool Path Planning for 5-Axis Flank Milling Based on Dynamic Programming Techniques,” International Journal of Machine Tools & Manufacture, pp. 1224-1233.
[12] C. H. Chu, C. T. Lee, K. W. Tien and C. J. Ting(2010) “Efficient Tool Path Planning for 5-Axis Flank Milling of Ruled Surfaces Using Ant Colony System Algorithms,” International Journal of Production Research, Vol. 49, No. 6, pp. 1557–1574.
[13] C. H. Chu and H. T. Hsieh (2010),“Generation of Reciprocating Tool Motion in 5-Axis Flank Milling Based on Particle Swarm Optimization,”Journal of Intelligent Manufacturing.
[14] H. T. Hsieh and C. H. Chu (2011),“Optimization of Tool Path Planning in 5-Axis Flank Milling of Ruled Surfaces with Improved PSO,” 21th International Conference on Flexible Automation and Intelligent Manufacturing.
[15] Engin S., Altintas Y., (2001), "Mechanics and Dynamics of General Milling Cutters.Part I: Helical End Mills", International Journal of Machine Tools & Manufacture,Vol 41, No. 15, pp 2195-2212.
[16] Wu P.H., Li Y.W., Chu C.H. Chu, (2007),”Optimized tool path generation based on dynamic programming for five-axis flank milling of rule surface.” International Journal of Machine Tools & Manufacture;48(11):1224-1233.
[17] Hsieh S.T., Chu, C.H., (2012),”Reducing machining error in 5-axis flank milling of ruled surfaces with improved PSO.” International Journal of Precision Engineering and Manufacturing;13(1):1-8.
[18] Hsieh S.T., Chu, C.H.,(2013),”Improving optimization of tool path planning in 5-axis flank milling using advanced PSO algorithms.” Robotics and Computer-Integrated Manufacturing;29(3):3-11.
[19] Hsieh, S.T., Tsai, Y.C., and Chu, C.H., (2012)” Multi-Pass Progressive Tool Path Planning in Five-Axis Flank Milling by Particle Swarm Optimization.” International Journal of Computer Integrated Manufacturing ;12:1-11.
[20] Hsieh S.T., Chu, C.H, (2009)” Particle swarm optimisation (PSO)-based tool pathplanning for 5-axis flank milling accelerated bygraphics processing unit (GPU).”International Journal of Computer Integrated Manufacturing;24(7):676-687.
[21] Chu C.H., Chen, J.T., (2006)” Automatic tool path generation for 5-axis flank milling based on developable surface approximation.” International Journal of Advanced Manufacturing Technology,; 29(7-8):707-713.
[22] Chu C.H., Hsieh S.T., (2012)” Generation of reciprocating tool motion in 5-axis flank milling based on particle swarm optimization.” Journal of Intelligent Manufacturing; 23(5):1501-1509.
[23] Williams A.R., (1984)” Tire design.” CHEMTECH;14(12):756-764.
[24] Fleming R.A., (1995)” Tire molding technology in die casting and venting: an overview.” Die Casting Engineer;39(5):111-117.
[25] Chen Z., Tu M., Bai H., (1995)” Research of tire tread pattern design expert system.” Journal of Wuhan University of Technology;17(1):85-88.
[26] Jung S.W., Bae S.W., Park G.T., (1994)” A design scheme for a hierarchical fuzzy pattern-matching classifier and its application to the tire tread pattern recognition. Fuzzy Sets and Systems;65(2-3):311-322.
[27] Chiu J.T., Weng W.C., Hung C.F., (2002)” Optimization of pitch sequencing for pneumatic tire by Tabu search method.” Japan Journal of Industrial and Applied Mathematics;19(3):399-414.
[28] Chu C.H., Song, M.C., Luo, V.C., (2006)” Computer aided parametric design for 3D tire mold production. Computers in Industry;57(1):11-25.
[29] Wu P.H., Li Y.W., Chu C.H. Chu, (2007)” Optimized tool path generation based on dynamic programming for five-axis flank milling of rule surface.” International Journal of Machine Tools & Manufacture;48(11):1224-1233.
[30] Hsieh S.T., Chu, (2012)” C.H., Reducing machining error in 5-axis flank milling of ruled surfaces with improved PSO. International Journal of Precision Engineering and Manufacturing;13(1):1-8.
[31] Chu C.H., Chen, J.T., (2006)” Automatic tool path generation for 5-axis flank milling based on developable surface approximation.” International Journal of Advanced Manufacturing Technology; 29(7-8):707-713.
[32] Kennedy J., Eberhart R.C., (1995)” Particle swarm optimization. Proc.” IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway, NJ, 1942–1948.
[33] Chu, C. H., Kuo, C. L., (2013)” Improving Optimization of Tool Path Planning in 5-Axis Flank Milling by Integrating Statistical Techniques,” Paper presented at the IIE Asian Conference, Taiepi, Taiwan.
[34] http://www.cgtech.com/usa/products/about-Vericut/
[35] http://www.malinc.com/index___.html
[36] 李宇尉 (2007),基於動態規劃之五軸側銑路徑最佳化,碩士論文,清華大學工業工程與工程管理研究所
[37] http://www.3ds.com/products/catia
[38] Budak E., Altintas Y., Armarego E. J. A., (1996),” Prediction of Milling ForceCoefficients from Orthogonal Cutting Data.” ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.