研究生: |
邵子興 Zi-Xing Shao |
---|---|
論文名稱: |
高科技工廠電力系統開關突波分析 Analysis of Switching Surge at High Tech Industry Power System |
指導教授: |
陳士麟
Shi-Lin Chen 潘晴財 Ching-Tsai Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 開關突波 、電磁暫態程式 、數值振盪 、循進式開關 、統計開關 |
外文關鍵詞: | Switching Surge, Electromagnetic Transient Program (EMTP), numerical instability, systematic switching model, statistical switching model |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
早期工廠以架空輸電線饋電,頻傳雷擊事故,為改善此問題,台灣電力公司已將部份的架空輸電線(特別是科學園區內的輸電線),予以地下化,大幅減低高科技工廠的雷害事故。近期科學園區內有些特高壓工廠發生避雷器事故,造成生產損失,遂擬拆除廠內11.4kV(或22.8kV)避雷器。實際上,在決定避雷器之存廢前,應先探討廠內11.4kV(或22.8kV)系統的過電壓特性。為此,本論文研究科學園區特高壓工廠內的開關突波,而以斷路器切換所引起的突波為研究重點,評估廠內保護11.4kV(或22.8kV)模鑄式變壓器之避雷器是否可予拆除。
本論文採用電磁暫態程式模擬開關突波。首先對於該程式的模擬方法進行探討。由於電磁暫態程式係運用梯形積分法求解微分方程式,而有數值振盪問題,遂有必要選擇適當之模型以避免此問題。據此,本論文針對科學園區內的一家特高壓半導體製造工廠對其廠外69kV地下電纜、69kV六氟化硫變電站、廠內11.4kV架空電纜、69kV及11.4kV變壓器、進相電容器、避雷器、斷路器、理想開關、統計開關與循進式開關等選擇模型,估計模型參數,並模擬半導體工廠斷路器之不同操作模式,運用統計開關模型,分析開關突波的電壓峯值之分佈機率。
模擬結果顯示:在11.4kV模鑄式變壓器的一次側,多數的開關突波會在設備絕緣的容許值的範圍內,但此突波會經由該變壓器的雜散電容耦合至二次側,其峯值卻有可能超過二次側的絕緣容許值,而致有破壞二次側系統設備絕緣的風險。據此建議:若無法承受此項事故風險,廠內保護11.4kV模鑄式變壓器之避雷器仍有設置之必要。
In the earlier time, Taiwan’s industrial power systems had been fed from Taipower system with overhead transmission lines. Lightning strikes on these lines sometimes caused factory production failures. To reduce lightning outages, in particular of the science park areas, the overhead lines were replaced by Taipower with underground cables. With lightning damages reduced, some high-tech factories recently however encountered arrester failures and are thus planning to dismantle the existing arresters installed to protect the 11.4kV (or 22.8kV) resin-type transformers inside the factory. The decision to dismantle the exiting 11.4kV (or 22.8kV) arresters actually requires in-depth evaluation of the overvoltage characteristics of the high-tech industry power system. For this purpose, the author simulates the transient overvoltage of a 69kV factory power system, focusing on the switching surge, by assuming no lightning can penetrate into the 11.4kV (or 22.8kV) system.
The simulation makes use of the Electromagnetic Transient Program (EMTP) which is based on the trapezoidal rule for solving the transient equations. The solution process is thus efficient but can incur numerical instability. To avoid numerical instability, adequate models should have been selected, and are accordingly selected in this study, for the simulated power system components which include the 69kV underground cable fed to the factory, gas-insulated substation, 11.4kV in-plant overhead cables, transformers, arresters, static capacitors, and the ideal, statistical or systematic switching models for representation of circuit breakers. After model selection, the author then estimates model parameters and simulates the circuit breaker switching sequence of high-tech factories. The simulation applies the statistical switching models. Thus the probability distribution for the voltage peak of switching surge can be evaluated.
The simulation results show that, at the primary side of 11.4kV resin-type transformer, most of the peaks are within the insulation withstand level of transformer, but the surge can be capacitively coupled to transformer’s secondary side with the voltage peak exceeding the insulation withstand level of the secondary system. By accounting for the risk of the secondary system failure, and if the factory owner can not bear this risk, it is suggested the arresters remain as where they are to continue their protecting of the 11.4kV resin-type transformers.
[1]Y. Li, W. Shi and X. Niu, "A Composite Exponential and Linear MOA Model for Switching Transient Simulation", IEEE Transactions on Power Delivery, Vol. 17, No. 3, pp.730-735, July 2002.
[2]薛小生、黃郁東,工業配電,第五章:開關設備,第十章:系統過電壓保護,大中國圖書公司,第20版,2003年出版,第153-161頁,第375-397頁。
[3]R. Rudenberg, Transient Performance of Electric Power Systems, M.I.T. Press, 1970.
[4]A. Greenwood, Electrical Transients in Power Systems, 2nd ed., John Wiley, 1991.
[5]P.W. Smith, Transient Electronics, John Wiley, 1991.
[6]A.R. Hileman, Insulation Coordination for Power Systems, Marcel Dekker, 1999.
[7]T. Gonen, Electric Power Transmission System Engineering, John Wiley, 1988.
[8]H.W. Dommel, Electromagnetic Transients Program Reference Manual (EMTP Theory Book), Report Prepared for Bonneville Power Administration, Portland, Oregon, July 1987.
[9]H.W. Dommel, "Digital Computer Solution of Electromagnetic Transients in Single-and Multiphase Networks", IEEE Transactions on Power Apparatus and Systems, Vol. 88, No. 4, pp.388-399, April 1969.
[10]J. Lin and J. Marti, "Implementation of The CDA Procedure in The EMTP", IEEE Transactions on Power Systems, Vol. 5, No. 2, pp.394-402, May 1990.
[11]J. Marti and J. Lin, "Suppression of Numerical Oscillations in The EMTP", IEEE Transactions on Power Systems, Vol. 4, No. 2, pp.739-747, May 1989.
[12]A. J. F. Keri et al., Modeling and Analysis of System Transients Using Digital Programs, IEEE PES Special Publication, IEEE Working Group 15.08.09., 1999.
[13]J.A. Martinez et al., “Comparison of Statistical Switching Results Using Gaussian, Uniform and Systematic Switching Approaches”, 2000 IEEE Power Engineering Society Summer Meeting, Vol. 8, No. 1, pp.884-889, 16-20 July 2000.
[14]陳耀彬,絕緣協調與避雷器,研討會講義,台灣愛波比公司主辦,2001年。
[15]陳士麟等,核三345kV及161kV變壓器低壓側是否加裝突波抑制設備之相關性研究,台灣電力公司委託清華大學研究計畫期末報告,2003年3月。
[16]李楷元,台灣高鐵電力系統之雷突波模擬,清華大學電機工程研究所碩士論文,2004年6月。
[17]林岳欽,台北捷運161kV主變電站開關切換造成車站低壓設備突波事故之分析與防範,清華大學電機工程研究所碩士論文,2000年6月
[18]黃婉瑩,竹科三期161kV系統之開關突波與鐵磁共振分析,清華大學電機工程研究所碩士論文,2004年6月。
[19]A.C. Legate, J.H. Brunke, J.J. Ray and E.J. Yasuda, “Elimination of Closing Resistor on EHV Circuit Breaker”, IEEE Transactions on Power Delivery, Vol. 3, No. 1, pp. 223-231, January 1988.
[20]K.C. Lee and K.P. Poon, “Statistical Switching Overvoltage Analysis of The First B.C. Hydro Phase Shifting Transformer Using The Electromagnetic Transients Program”, IEEE Transactions on Power Systems, Vol. 5, No. 4, pp. 1054-1060, November 1990.
[21]B.C. Furumasu and R.M. Hasibar, “Design and Installation of 500 kV Back-to-Back Shunt Capacitor Banks”, IEEE Transactions on Power Delivery, Vol. 7, No. 2, pp. 539-545, April 1992.
[22]B. Bhargava et al., “Effectiveness of Pre-Insertion Inductors for Mitigating Remote Overvoltages Due to Shunt Capacitor Energization”, IEEE Transactions on Power Delivery, Vol. 8, No. 3, pp.1226-1238, July 1993.
[23]N. Kolcio et al., “Transient Overvoltages and Overcurrents on 12.47 kV Distribution Lines: Computer Modeling Results”, IEEE Transactions on Power Delivery, Vol. 8, No. 1, pp.359-366, January 1993.
[24]V. Brandwajn, H.W. Donnel and I.I. Dommel, "Matrix Representation of Three-Phase N-Winding Transformers for Steady-State and Transient Studies", IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 6, pp.1369-1378, June 1982.
[25]S. Chimklai and J.R. Marti, "Simplified Three-Phase Transformer Model for Electromagnetic Transient Studies", IEEE Transactions on Power Delivery, Vol. 10, No. 3, pp.1316-1325, July 1995.
[26]R.H. Harner and J. Rodriguez, "Transient Recovery Voltages Associated With Power-System, Three-Phase Transformer Secondary Faults", IEEE Transactions on Power Apparatus and Systems, Vol. 91, No. 5, pp.1887-1896, Sept. 1972.
[27]IEEE Application Guide for Transient Recovery Voltage for AC High-Voltage Circuit Breakers, IEEE Std. C37.011-2005, New York, 2005.
[28]IEEE Standard for Metal-Oxide Surge Arresters for AC Power Circuits(>1 kV), IEEE Std. C62.11-2005, New York, 1999.
[29]J. C. Das, "Surge Transference through Transformers", IEEE Industry Applications Magazine, Vol. 9, No. 5, pp.24-32, Sept.-Oct. 1972.
[30]IEEE Working Group 3.4.11, “Modeling of Metal Oxide Surge Arresters”, IEEE Transactions on Power Delivery, Vol. 7, No. 1, pp.302-309, January 1992.
[31]X. Cao et al., "Suppression of Numerical Oscillation Caused by The EMTP-TACS Interface Using Filter Interposition", IEEE Transactions on Power Delivery, Vol. 11, No. 4, pp.2049-2055, Oct. 1996.
[32]C. T. Liu and W. L. Chang, "Synchronized Solution of Power Electronics System Equations Using Flexible MODELS Component Connected to The EMTP", IEEE Transactions on Power Delivery, Vol. 11, No. 4, pp.1868-1873, Oct. 1996.
[33]N.R. Watson and G.D. Irwin, "Comparison of Root-Matching Techniques for Electromagnetic Transient Simulation", IEEE Transactions on Power Delivery, Vol. 15, No. 2, pp.629-634, April 2000.