簡易檢索 / 詳目顯示

研究生: 錢俊逸
Chyan, J. Y.
論文名稱: Optical Absorption and Emission of Silicon Nanostructures for Solar Cells and LEDs
指導教授: 葉哲良
Yeh, J. A.
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 132
中文關鍵詞: 奈米結構光學吸收光學發射太陽能電池發光二極體
外文關鍵詞: Si, nanostructures, optical absorption, optical emission, solar cells, LEDs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究焦點,在於矽奈米結構之光學吸收以及光學發射之特性,特別是在可見光之波段。此奈米結構是以適用於量產方式之奈米金屬粒子蝕刻法製作,此奈米金屬粒子蝕刻法是一種純濕式化學蝕刻方式,可在常溫下針對包含單晶矽以及多晶矽基板進行蝕刻,可於數分鐘內,在矽基板表面完成奈米結構化之動作。使用此奈米金屬粒子蝕刻法所製作出之矽奈米結構,其特徵尺寸約略在幾十至幾百奈米之範圍,能對可見光產生交互影響,因而成為光學功能性材料。
    本文針對上述之矽奈米結構,進行包含反射、吸收以及發光之各種機制之研究與探討。在矽奈米結構的備製上,除前述所提及之奈米金屬粒子蝕刻法外,亦使用各項氣體蝕刻與薄膜沈積等後續製程,觀察物理性質之變化。在物性量測上,使用了半球光頻譜量測,X-ray光電導頻譜分析,X-ray晶向繞射,微波載子生命週期量測等方式,對矽奈米結構作定性定量分析。本論文已完成之各項具指標性意義的矽奈米結構研究如下:(1)可見光與近紅外光全頻譜反射率僅1%之六吋單晶與多晶矽黑色太陽能晶片(2)黑色太陽能晶片之表面鈍化處理(3)可應用於薄膜型矽太陽能電池之抗反射奈米海綿(4)藍光強發射矽奈米樹狀結構陣列(5)可見光電致發光之矽基材二極體。
    本論文所研究之成果,可應用於光電、電子、生醫、能源等廣泛領域,尤其適用於太陽能電池的光電轉換效率提升以及矽奈米光電積體電路之開發。而除了對太陽能電池有所效益外,研究內容中,對於黑色太陽能晶片之表面鈍化處理,創新使用了常溫下有機高分子氣相沈積的方式,發現有機高分子氣相沈積可針對高深寬比矽奈米結構進行表面鈍化,有效減少矽基材表面缺陷,降低載子表面結合現象,此成果可應用於未來更高精密度之奈米電子元件,進行更微小更高速之電晶體研發。另外,本論文之研究成果,業已發現在矽基材上,可突破矽之能隙限制,產生強烈的藍光發射,甚至白光(全頻段可見光)發射,此成果亦可對矽奈米光電積體電路發展上之瓶頸 — 可整合於晶片之光電轉換器,開闢一條解決途徑。


    Table of content Abstract V Acknowledgement VI List of Tables VII List of Figures VIII 1. INTRODUCTION 1 2. SOLID STATE PHYSICS OF SILICON 5 2.1 ENERGY BAND STRUCTURE 5 2.2 CONDUCTION BAND AND VALENCE BAND DENSITY OF STATES 8 2.3 CARRIER GENERATION 8 2.3.1 Direct optical absorption 11 2.3.2 Phonon-assisted optical absorption 13 2.3.3 Absorption edge of intrinsic Si 15 2.3.4 Free carrier absorption and Burstein-Moss effect 16 2.3.5 Sub-threshould carrier generation by defects and alloying 20 2.3.6 Generation rate 21 2.4 CARRIER TRANSPORT 22 2.5 CARRIER RECOMBINATION 26 2.5.1 Radiative recombination 27 2.5.2 Non-radiative band-to-band Auger recombination 28 2.5.3 Non-radiative recombination through defect levels 30 2.5.4 Surface recombination 31 2.5.5 Contact recombination 36 2.5.6 Diffused layer contribution 37 2.5.7 Quantum efficiency 45 2.6 SURFACE AND INTERFACE STATES 46 2.4.1 Space-charge region 50 2.4.2 Surface states on Si 51 3. OPTICAL REFLECTION OF BLACK SILICON WAFERS 53 3.1 INTRODUCTION 53 3.2 EXPERIMENT 54 3.3 OPTICAL REFLECTION OF BLACK SOLAR GRADE SILICON WAFERS 55 3.3.1 Optical reflection of single-crystalline solar grade silicon wafers 55 3.3.2 Optical reflection of multi-crystalline solar grade silicon wafers 58 3.4 CRYSTAL ORIENTATION EFFECT 60 3.5 DOPING TYPE EFFECT 62 3.6 DOPING DENSITY EFFECT 64 3.7 OPTICAL ABSORPTION IN SI NANOSTRUCTURES 66 3.8 CONCLUSION 68 4. SURFACE PASSIVATION OF BLACK SILICON WAFERS 70 4.1 INTRODUCTION 70 4.2 EXPERIMENT 71 4.3 EFFECTIVE CARRIER LIFETIME INVESTIGATEION 74 4.3.1 Effective carrier life time of black silicon wafers 76 4.3.2 Effective carrier life time of oxidized black silicon wafers 76 4.3.3 Effective carrier life time of SiNx-coated black silicon wafers 78 4.3.4 Effective carrier life time of hydrogenated black silicon wafers 79 4.3.5 Effective carrier life time of organic moleculs-coated black silicon wafers 79 4.4 CONCLUSION 82 5. POLYCRYSTALLINE BLACK SILICON THIN FILMS 82 5.1 INTRODUCTION 83 5.2 EXPERIMENT 84 5.3 MORPHOLOGY AND CRYSTALLINITY 86 5.4 MORPHOLOGY AND OPTICAL REFLECTION 88 5.5 SURFACE PASSIVATION 91 5.6 SHORT-CIRCUIT CURRENT DENSITY ENHANCEMENT 92 5.7 CONCLUSION 93 6. BLUE AND GREEN PHOTOLUMINESCENCE FROM SILICON NANORODS ARRAY REFINED BY DRY ETCHING 94 6.1 INTRODUCTION 94 6.2 EXPERIMENT 96 6.3 PHOTOLUMINESCENCE SPECTRA 98 6.3.1 ICP-refined silicon nanorods 98 6.3.2 XeF2-refined silicon nanorods 103 6.4 XPS ANALYSIS 105 6.5 OXIDIZED SILICON NANORODS ARRAYS 105 6.5 CONCLUSION 110 7. VISIBLE ELECTROLUMINESCENCE OF NANOSCALE SLVER OXIDE JUNCTION FOR SILICON-BASED LIGHT EMITTING DIODES 111 7.1 INTRODUCTION 111 7.2 EXPERIMENT 112 7.3 ELECTRONIC AND PHOTONIC CHARATERISTICS 114 7.3.1 Electronic characteristics 114 7.3.2 Photonic characteristics 115 7.4 CONCLUSION 116 8. FUTURE WORK AND OUTLOOK 117 APPENDIX A Optical Properties of Intrinsic Silicon APPENDIX B Resistivity and Doping Density of Silicon APPENDIX C Carrier Mobility and Doping Density of Silicon APPENDIX D Metal-nanoparticles (NPs) assisted etching BIBLIOGRAPHY

    [1] S. S. Iyer and Y. H. Xie, Science 260, 40 (1993)

    [2] R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron., QE-23, 123 (1987)

    [3] B. L. Weiss, G. T. Reed, S. K. Toh, R. A. Soref, and F. Namavr, IEEE Photonic. Tech. Lett. 3, 19 (1991)

    [4] Communication from the Commission Energy for the Future: Renewable Sources of Energy White Paper for a Community Strategy and Action Plan

    [5] Solar Generation V – 2008, EPIA/Greenpeace (2008).

    [6] A. Goetzberger and C. Hebling, Solar Energy Materials and Solar Cells 62, 1 (2000)

    [7] B. A. Saleh and M. C. Telch, Fundamentals of Photonics, (John Wiley &Sons, New York, 1991) p. 574

    [8] R. A. Smith, Semiconductors, (Cambridge Univ. Press, London and New York 1968) p. 120

    [9] J. R. Chelikowski, and M. L. Cohen, Phys. Rev. B 14, 556 (1976)

    [10] R. Hulthen and N. G. Nilsson, solid state communications 18, 1341 (1976)

    [11] A. S. Grove, Physics and Technology of Semiconductor Devices, (John Wiley &Sons, New York, 1967) p. 116

    [12] A. S. Grove, Physics and Technology of Semiconductor Devices, (John Wiley &Sons, New York, 1967) p.133

    [13] K. L. Shaklee and R. E. Nahory, Phys. Rev. Lett. 24, 942 (1970)

    [14] G. G. MacFarlane and T. P. Mclean, Phys. Rev. 111, 1245 (1958)

    [15] W. Spitzer and H. Y. Fan, Phys. Rev. 108, 268 (1957)

    [16] P. E. Schmid, Phys. Rev. B 23, 5531 (1981)

    [17] G. Lucovsky, solid state communication, 3, 299 (1965)

    [18] R. People, Phys. Rev. B, 32, 1405 (1985)

    [19] D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, Appl. Phys. Lett. 47, 1333 (1985)

    [20] R. T. Swimm, J. Appl. Phys. 53, 7502 (1982)

    [21] A. Rose Concept in photoconductivity and allied problems, (John Wiley &Sons, New York, 1963) p.120

    [22] K. P. Sinha and M. DiDomenico, Phys. Rev. B 1, 2623 (1970)

    [23] D. K. Schroder, Semiconductor Material and Device Characterization, (John Wiley &Sons, New York, 1998) p. 422

    [24] A. S. Grove, Physics and Technology of Semiconductor Devices, (John Wiley &Sons, New York, 1967) p. 1

    [25] W. D. Eades and R. M. Swanson, J. Appl. Phys. 52, 320 (1981)

    [26] D. E. Kane and R. M. Swanson, Proceedings of the 18th IEEE Photovoltaic Specialists Conference, Las Vegas, New York, IEEE, 578 (1985)

    [27] A. Cuevas and D. Macdonald, Solar Energy 76, 255 (2004)

    [28] A. Cuevas, Sol. Energy Mater. Sol. Cells 57, 277 (1999)

    [29] M. J. Kerr, J. Schmidt, A. Cuevas and J. H. Bultman, J. Appl. Phys. 89, 3821 (2001)

    [30] E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter and T.B. Bright, Phys.Rev. Lett. 57, 249 (1986)

    [31] H. Angermann, J. Rappich, L. Korte, I. Sieber, E. Conrad, M. Schmidt, K. Hu‥bener, J. Polte, J. Hauschild, Applied Surface Science 254, 3615 (2008)
    [32] A. Goetzberger, C. Hebling, H. W. Schock, Materials Science and Engineering R 40, 1 (2003)

    [33] P. Campell and M. A. Green, J. Appl. Phys. 62, 243 (1987)

    [34] M. Lipinski, A. Kaminski, J. –F. Lellevre, M. Lemiti, E. Fourmond, and P. Zieba, Phys. Stat. Sol. (c) 4, 1566 (2007)

    [35] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen and L. C. Chen, Nature Nanotechnology 2, 77 (2007)

    [36] K. Q. Peng, J. Hu, Y, Yan, Y. Wu, H. Fang, Y. Xu, S. Lee, and J. Zhu, Adv. Funct. Mater. 16, 387 (2006)

    [37] J. -Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nature Photonics 1, 176 (2007)

    [38] V. Lehmann, U. Gosele, Appl. Phys. Lett. 138, L3 (1991)

    [39] A. Loni, L. T. Canham, M. G. Berger, R. Arens-Fischer, H. munder, H. Luth, H. F. Arrand, T. M. Benson, Thin Solid Films 276, 143 (1996)

    [40] W. Thesis, Surf. Sci. Rep. 29, 91 (1997)

    [41] S. Wang, X. Z. Yu, H. T. Fan, Appl. Phys. Lett. 91, 061105 (2007)

    [42] H. Nagel, A. G. Aberle, and R. Hezel, Prog. Photovolt: Res. Appl. 7, 245 (1999)

    [43] A. J. M. van Erven, R. C. M. Bosch and M. D. Bijker, Prog. Photovolt: Res. Appl. 16, 615 (2008)

    [44] M. J. Kerr, J. Schmidt and A. Cuevas, J. Appl. Phys. 89, 3821 (2001)

    [45] H. Mackel and R. Lludemann, J. Appl. Phys. 92, 2602 (2002)

    [46] W. D. Eades and R. M. Swanson, J. Appl. Phys. 58, 4267 (1985)
    [47] O. Schultz, A. Mette, M. Hermle, and S. W. Glunz, Prog. Photovolt: Res. Appl. 16, 317 (2008)

    [48] E. Yablonovitch, R. M. Swanson, W. D. Eades, B. R. Weinberger, Appl. Phys. Lett. 48, 245 (1986)

    [49] D. Buie, M. J. McCann, K. J. Weber, and C. J. Dey, Solar Energy Materials and Solar Cells 81, 13 (2004)

    [50] H. Jin and K. J. Weber, Prog. Photovolt: Res. Appl. 15, 405 (2007)

    [51] M. S. Mason, C. E. Richarson, H. A. Atwar, and R. K. Ahrenkiel, Thin Solid Film 501, 288 (2006)

    [52] I. Gordon, L. Carnel, D. Van Gestel, G. Beaucarne and J. Poortmans, Prog. Photovol: Res. Appl. 15, 575 (2007)

    [53] S, Fahr, C. Ulbrich, T. Kirchartz, U. Rau,C. Rockstuhl, and F. Lederer, Opt. Express 16, 9332 (2008)

    [54] A. Mahdjoub and L. Zighed, Thin Solid Films, 478, 299, (2005)

    [55] Joo, M. S. Park, and J. K. Kim, Langmuir 22, 7960 (2006)

    [56] X. Li and P. W. Bohn, Appl. Phys. Lett. 77, 2572 (2000)

    [57] K. Peng, Y. Yan, S. Gao, and J. Zhu, Adv, Mater. 14, 1164 (2002)

    [58] K. Peng, Y. Yan, S. Gao, and J. Zhu, Adv, Funct. Mater. 13, 127 (2003)

    [59] C. Hsu et al, Nano Lett. 4, 471, (2004)

    [60] J. –Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T. –M. Lu, and S. Y. Lin, Opt. Lett. 31, 601 (2006)

    [61] M. W. Jenkins, J. Electrochem. Soc. 124, 757 (1977)

    [62] H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, M. Yamaguchi, Prog. Photovolt: Res. Appl. 15, 415 (2007)

    [63] P. Mutti et al, Appl. Phys. Lett. 66, 851 (1995)

    [64] W. Skorupa et al, Appl. Phys. Lett. 69, 2410 (1996)

    [65] H. Z. Song, X. M. Bao, N. S. Li, and X. L. Wu, Appl. Phys. Lett. 72, 356 (1998)

    [66] C. L. Heng, Appl. Phys. Lett. 77, 1416 (2000)

    [67] L. Rebohle et al, Appl. Phys. Lett. 71, 2809 (1999)

    [68] G. G. Qin et al, Appl. Phys. Lett. 74, 2182 (1999)

    [69] D. P. Yu et al, Appl. Phys. Lett. 73, 3076 (1998)

    [70] W. P. Zheng, D. Sheng, and B. David, Appl. Phys. Lett. 86, 3159 (2003)

    [71] M. Zhang et al, Appl. Phys. Lett. 80, 491 (2002)

    [72] X. Fan, X. Meng, X. Zhang, Appl. Phys. Lett. 90, 103114 (2007)

    [73] H. S. Li, X. F. Zhu, Y. P. Zhao, J. Phys. Chem. B 108, 17032 (2004)

    [74] Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, J. Am. Chem. Soc. 124, 1817, (2002)

    [75] R. Ma and Y. Bando, Chem. Phys. Lett. 377, 177 (2003)

    [76] E. Chow et al, Opt. Lett. 29, 1093 (2004)

    [77] M. Peralvarez, et al, Appl. Phys. Lett. 89, 051112 (2006)

    [78] A. Polman, Nat. Mater., 1, 10, (2002)

    [79] S. Prunal, J. M. Sun, W. Skorupa, and M. Helm, Appl. Phys. Lett. 90, 1811211 (2007)

    [80] S. Takata, T. MInani, and H. Nanto, Jpn. J. App. Phys. 20, 1759 (1981)
    [81] M. Hofmann, C. Schmidt, N. Kohn, J. Rentsch, S. W. Glunz, and R. Preu, Prog. Photovolt: Res. Appl. 16, 509 (2008)

    [82] Z. Yuan, D. Li, M. Wang, P. Chen, D. Gong, P. Cheng, and D. Yang, Appl. Phys. Lett., 92, 121908 (2008)

    [83] T. H. Lee, J. I. Gonzalez, and R. M. Dickson, PNAS 99, 10272 (2002)

    [84] J. Zheng and M. R. Dickson, J. Am. Chem. Soc. 124, 13982 (2002)

    [85] D. D. D. Ma, C. S. Lee, F. C. K Au, S. Y. Tong and S. T. Lee, Science 299, 1874 (2003)

    [86] G. E. Jellison and F. A. Mondine, Oak National Laboratory, TM-8002 (1982)

    [87] H. A. Weakleim and D. Redfield, J. Appl. Phys. 50, 1491 (1979)

    [88] R. T. Swimm and K. A. Dumas, J. Appl. Phys. 53, 7502 (1982)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE