簡易檢索 / 詳目顯示

研究生: 莊季芬
Chuang, Chi-Fen
論文名稱: 高頻刺激視丘下核活化巴金森氏模式鼠的運動皮質
High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex in Hemi-Parkinsonian Rats
指導教授: 張兗君
Chang, Yen-Chung
口試委員: 葉世榮
Yeh, Shin-Rung
陳新
Chen, Hsin
袁俊傑
Yuan, Chiun-Jye
周韻家
Chou, Yun-Chia
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 73
中文關鍵詞: 腦深層刺激多巴胺受器運動皮質巴金森氏症視丘下核
外文關鍵詞: deep brain stimulation, dopamine receptors, motor cortex, Parkinson’s disease, subthalamic nucleus
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 巴金森氏症是全球僅次於阿茲海默症第二常見的神經退化性疾病。在本研究中,我們利用藥物單邊破壞大鼠單邊中腦區的多巴胺神經元的hemi-Parkinsonian 大鼠作為模式生物,藉由測量清醒未麻醉且自由活動之hemi-Parkinsonian 大鼠腦內主要運動皮質(primary motor cortex,M1)的腦內區域活性訊號(Local field potential),我們可發現一些與正常大鼠腦內區域活性訊號的不同之處,主要是強烈的beta oscillation 及大量出現的High voltage spindles(HVSs)腦波訊號。
    深層腦刺激(DBS)是廣泛被用於改善嚴重巴金森氏症的治療方法,本篇利用視丘下核腦區(STN)133赫茲的高頻刺激 (簡稱STN-HFS) 模擬腦深層刺激。然而這些不正常的訊號能夠藉由給予hemi-Parkinsonian大鼠STN-HFS而降低beta oscillation強度與HVSs的出現頻率。STN-HFS甚至能抑制常用來斷定大鼠為hemi-Parkinsonian 模式鼠的甲基安非他命所誘發之同側旋轉行為。
    為了探討視丘下核深層腦刺激對運動皮質神經活性的影響,我們記錄M1的第二、三層與第五層(M1-layer II/III與M1-layer Vb)在施予STN-HFS時所被誘發的腦內活性訊號(evoked potentials, EPs),其誘發的腦內活性訊號根據推測分別主要因為溯回spike (antidromic spike) 及區域活性訊號(local activity)。本實驗發現於M1 的第II/III層處理CNQX及Bicuculin 用以分別抑制GABA及Glutamate神經元的神經間的傳遞能夠有效降低高頻刺激誘發的皮質區域腦部活性,但而沒辦法降低刺激同側刺激視丘下核後於M1產生的溯回spike。
    研究常利用c-Fos的表現常做為神經活性的指標,我們發現到hemi-Parkinsonian大鼠的左右半腦運動皮質中c-Fos表現細胞的數量是不一致的,而這種不一致的
    現象是能夠經由STN-HFS而矯正的。此外,STN-HFS會使運動皮質的某群細胞產生強烈的c-Fos表現,這些細胞的生化及結構上都與椎狀細胞(pyramidal cell)相符合並具有傳出的神經軸突至視丘下核特性。我們亦發現這些錐狀細胞的強烈c-Fos表現能夠受到局部的給予運動皮質淺層對非NMDA的Glutamate、GABAa及多巴胺受體之拮抗劑抑制。此結果顯示出STN-HFS會同時活化運動皮質的神經突觸與多巴胺受器,進而造成強烈的c-Fos表現的原因。錐狀細胞的c-Fos的強烈表現也反映出在深層腦刺激時的細胞處於活化狀態。本研究也進一步探討視丘下核深層腦刺激後運動皮質中的多巴胺受體如何被活化以及運動皮質中的多巴胺受體活化後對巴金森氏症的治療效果的貢獻。


    Parkinson’s disease (PD) is the second most common debilitating neurologic disease after Alzheimer’s disease globally. In this study, rats whose midbrain dopaminergic neurons have been depleted unilaterally, called as hemi-Parkinsonian rats, are used as a model. By local field potential (LFP) recording, we detect alterations in the activities in the primary motor cortex, M1, of freely moving hemi Parkinsonian rats. These alterations include the presence of exacerbated oscillations in the β‐regime and the more frequent appearance of high voltage spindle episodes (HVSs). Application of high-frequency, 130 Hz, stimulation applied on the subthalamic nucleus (STN-HFS) is used to mimic the DBS treatment that is widely used to treat advanced Parkinson’s disease. Application of STN-HFS in hemi-Parkinsonian rats can also attenuate the β-oscillations and reduce the appearance of HVSs, as well as reverse the amphetamine-induced rotation, which is a characteristic movement of these rats.
    Here, we investigate how STN-HFS influences the neural activity in the motor cortex. During the interval between two consecutive stimulations, evoked LFPs corresponding to antidromic spikes and local activities are recorded in layer II/III and layer Vb regions of the M1. Local application of CNQX and bicuculline, which respectively inhibit fast glutamatergic and GABAergic synaptic transmission, in layer II/III, but not layer V of M1 greatly reduces the local activity, but not the activity corresponding to antidromic spikes induced by STN-HFS to the same side.
    c-Fos expression in neurons is used as an indicator of neural activity. We find that the motor cortices in the two hemispheres of hemi-Parkinsonian rats contain unequal number of c-Fos+-cells, and STN-HFS rectifies this bilateral imbalance. In addition, STN-HFS leads to the intense c-Fos expression of a group of motor cortex neurons which exhibit biochemical and anatomical characteristics resembling those of pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons whith high levels of c-Fos expression is significantly reduced by local application of the antagonists to non-NMDA glutamate receptors, GABAA receptors and dopamine receptors in the upper layers of the motor cortex. The results suggest that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS may underlie the intense expression of c-Fos, which reflects the status of neuronal activity, of PT neurons. How dopamine receptors in the motor cortex are activated during STN-HFS and how dopamine receptor activation in the motor cortex may contribute to the therapeutic effects of STN-DBS in treating PD have also been discussed.

    Chapter I: Overview 1 中文摘要 II Abstract VI Introduction 2 Materials and Methods 6 Chapter Ⅱ: High-Frequency Stimulation of the Subthalamic Nucleus Attenuates Alterations in the Activities of Primary Motor Cortex in Freely Moving hemi-Parkinsonian rat 14 Abstract 15 Introduction 16 Results 19 Summary 24 Figures and Figure Legends 25 Chapter ⅡI: High-Frequency Stimulation of the Subthalamic Nucleus Activates Motor Cortex Pyramidal Tract Neurons by a Process Involving Local Glutamate, Gaba And Dopamine Receptors in Hemi-Parkinsonian Rats 35 Abstract 36 Introduction 37 Results 39 Summary 46 Figures and Figure Legends 47 Chapter Ⅳ: General Conclusion and Discussion 59 Discussion 60 Reference 66  

    Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual review of neuroscience 9, 357-381.
    Awenowicz, P.W., and Porter, L.L. (2002). Local application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex. Journal of neurophysiology 88, 3439-3451.
    Baker, K.B., Montgomery, E.B., Jr., Rezai, A.R., Burgess, R., and Luders, H.O. (2002). Subthalamic nucleus deep brain stimulus evoked potentials: physiological and therapeutic implications. Movement disorders : official journal of the Movement Disorder Society 17, 969-983.
    Beaulieu, J.M., Espinoza, S., and Gainetdinov, R.R. (2015). Dopamine receptors - IUPHAR Review 13. Br J Pharmacol 172, 1-23.
    Beck, M.H., Haumesser, J.K., Kuhn, J., Altschuler, J., Kuhn, A.A., and van Riesen, C. (2016). Short- and long-term dopamine depletion causes enhanced beta oscillations in the cortico-basal ganglia loop of parkinsonian rats. Experimental neurology 286, 124-136.
    Benabid, A.L., Pollak, P., Louveau, A., Henry, S., and de Rougemont, J. (1987). Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Applied neurophysiology 50, 344-346.
    Benavides-Piccione, R., and DeFelipe, J. (2007). Distribution of neurons expressing tyrosine hydroxylase in the human cerebral cortex. Journal of anatomy 211, 212-222.
    Bergman, H., Wichmann, T., and DeLong, M.R. (1990). Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436-1438.
    Blumenfeld, Z., and Bronte-Stewart, H. (2015). High Frequency Deep Brain Stimulation and Neural Rhythms in Parkinson's Disease. Neuropsychology review 25, 384-397.
    Boix, J., Padel, T., and Paul, G. (2015). A partial lesion model of Parkinson's disease in mice--characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 284, 196-206.
    Boraud, T., Bezard, E., Bioulac, B., and Gross, C. (1996). High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neuroscience letters 215, 17-20.
    Braak, H., Del Tredici, K., Rub, U., de Vos, R.A., Jansen Steur, E.N., and Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of aging 24, 197-211.
    Bruet, N., Windels, F., Bertrand, A., Feuerstein, C., Poupard, A., and Savasta, M. (2001). High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. Journal of neuropathology and experimental neurology 60, 15-24.
    Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nature neuroscience 7, 446-451.
    Cantello, R., Tarletti, R., and Civardi, C. (2002). Transcranial magnetic stimulation and Parkinson's disease. Brain research Brain research reviews 38, 309-327.
    Carron, R., Chaillet, A., Filipchuk, A., Pasillas-Lepine, W., and Hammond, C. (2013).
    Closing the loop of deep brain stimulation. Frontiers in systems neuroscience 7, 112.
    Carron, R., Filipchuk, A., Nardou, R., Singh, A., Michel, F.J., Humphries, M.D., and Hammond, C. (2014). Early hypersynchrony in juvenile PINK1(-)/(-) motor cortex is rescued by antidromic stimulation. Frontiers in systems neuroscience 8, 95.
    Chaudhuri, A. (1997). Neural activity mapping with inducible transcription factors. Neuroreport 8, v-ix.
    Chen, L., Liu, Z., Tian, Z., Wang, Y., and Li, S. (2000). Prevention of neurotoxin damage of 6-OHDA to dopaminergic nigral neuron by subthalamic nucleus lesions. Stereotact Funct Neurosurg 75, 66-75.
    Chiken, S., and Nambu, A. (2016). Mechanism of Deep Brain Stimulation: Inhibition, Excitation, or Disruption? The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 22, 313-322.
    Cohen, S., and Greenberg, M.E. (2008). Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24, 183-209.
    Connolly, B.S., and Lang, A.E. (2014). Pharmacological treatment of Parkinson disease: a review. Jama 311, 1670-1683.
    Contarino, M.F., Bour, L.J., Verhagen, R., Lourens, M.A., de Bie, R.M., van den Munckhof, P., and Schuurman, P.R. (2014a). Directional steering: A novel approach to deep brain stimulation. Neurology 83, 1163-1169.
    Contarino, M.F., Van Den Munckhof, P., Tijssen, M.A., de Bie, R.M., Bosch, D.A., Schuurman, P.R., and Speelman, J.D. (2014b). Selective peripheral denervation: comparison with pallidal stimulation and literature review. Journal of neurology 261, 300-308.
    Creed, M.C., Hamani, C., and Nobrega, J.N. (2013). Effects of repeated deep brain stimulation on depressive- and anxiety-like behavior in rats: comparing entopeduncular and subthalamic nuclei. Brain stimulation 6, 506-514.
    Cruz, F.C., Koya, E., Guez-Barber, D.H., Bossert, J.M., Lupica, C.R., Shaham, Y., and Hope, B.T. (2013). New technologies for examining the role of neuronal ensembles in drug addiction and fear. Nat Rev Neurosci 14, 743-754.
    Cyron, D. (2016). Mental Side Effects of Deep Brain Stimulation (DBS) for Movement Disorders: The Futility of Denial. Frontiers in integrative neuroscience 10, 17.
    de Hemptinne, C., Swann, N.C., Ostrem, J.L., Ryapolova-Webb, E.S., San Luciano, M., Galifianakis, N.B., and Starr, P.A. (2015). Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease. Nature neuroscience 18, 779-786.
    Dejean, C., Gross, C.E., Bioulac, B., and Boraud, T. (2007). Synchronous high-voltage spindles in the cortex-basal ganglia network of awake and unrestrained rats. The European journal of neuroscience 25, 772-784.
    Dejean, C., Nadjar, A., Le Moine, C., Bioulac, B., Gross, C.E., and Boraud, T. (2012). Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats. Neurobiology of disease 46, 402-413.
    Delaville, C., Cruz, A.V., McCoy, A.J., Brazhnik, E., Avila, I., Novikov, N., and Walters, J.R. (2014). Oscillatory Activity in Basal Ganglia and Motor Cortex in an Awake Behaving Rodent Model of Parkinson's Disease. Basal Ganglia 3, 221-227.
    DeLong, M.R., and Benabid, A.L. (2014). Discovery of high-frequency deep brain stimulation for treatment of Parkinson disease: 2014 Lasker Award. Jama 312, 1093-1094.
    Devergnas, A., and Wichmann, T. (2011). Cortical potentials evoked by deep brain stimulation in the subthalamic area. Frontiers in systems neuroscience 5, 30.
    Dickson, D.W., Braak, H., Duda, J.E., Duyckaerts, C., Gasser, T., Halliday, G.M., Hardy, J., Leverenz, J.B., Del Tredici, K., Wszolek, Z.K., et al. (2009). Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. The Lancet Neurology 8, 1150-1157.
    Elahi, B., Elahi, B., and Chen, R. (2009). Effect of transcranial magnetic stimulation on Parkinson motor function--systematic review of controlled clinical trials. Movement disorders : official journal of the Movement Disorder Society 24, 357-363.
    Falconer, D., Shenai, M., and Rogers, S. (2017). Improvement in motor and non-motor Parkinson's disease symptoms with use of rytary (carbidopa/levodopa) in dopamine-naive patients; a case series. Movement Disord 32, S38-S39.
    Gale, J.T., Lee, K.H., Amirnovin, R., Roberts, D.W., Williams, Z.M., Blaha, C.D., and Eskandar, E.N. (2013). Electrical stimulation-evoked dopamine release in the primate striatum. Stereotact Funct Neurosurg 91, 355-363.
    Gaspar, P., Duyckaerts, C., Alvarez, C., Javoy-Agid, F., and Berger, B. (1991a). Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's disease. Annals of neurology 30, 365-374.
    Gaspar, P., Duyckaerts, C., Alvarez, C., Javoy-Agid, F., and Berger, B. (1991b). Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's disease. Ann Neurol 30, 365-374.
    George, J.S., Strunk, J., Mak-McCully, R., Houser, M., Poizner, H., and Aron, A.R. (2013). Dopaminergic therapy in Parkinson's disease decreases cortical beta band coherence in the resting state and increases cortical beta band power during executive control. NeuroImage Clinical 3, 261-270.
    Gilbertson, T., Lalo, E., Doyle, L., Di Lazzaro, V., Cioni, B., and Brown, P. (2005). Existing motor state is favored at the expense of new movement during 13-35 Hz oscillatory synchrony in the human corticospinal system. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 7771-7779.
    Godefroy, F., Bassant, M.H., Weil-Fugazza, J., and Lamour, Y. (1989). Age-related changes in dopaminergic and serotonergic indices in the rat forebrain. Neurobiol Aging 10, 187-190.
    Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M., and Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science 324, 354-359.
    Guo, L., Xiong, H., Kim, J.I., Wu, Y.W., Lalchandani, R.R., Cui, Y., Shu, Y., Xu, T., and Ding, J.B. (2015). Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease. Nature neuroscience 18, 1299-1309.
    Gutierrez, J.C., Seijo, F.J., Alvarez Vega, M.A., Fernandez Gonzalez, F., Lozano Aragoneses, B., and Blazquez, M. (2009). Therapeutic extradural cortical stimulation for Parkinson's Disease: report of six cases and review of the literature. Clinical neurology and neurosurgery 111, 703-707.
    Halje, P., Tamte, M., Richter, U., Mohammed, M., Cenci, M.A., and Petersson, P. (2012). Levodopa-induced dyskinesia is strongly associated with resonant cortical oscillations. J Neurosci 32, 16541-16551.
    Hamani, C., Saint-Cyr, J.A., Fraser, J., Kaplitt, M., and Lozano, A.M. (2004). The subthalamic nucleus in the context of movement disorders. Brain 127, 4-20.
    Herrington, T.M., Cheng, J.J., and Eskandar, E.N. (2016). Mechanisms of deep brain stimulation. Journal of neurophysiology 115, 19-38.
    Hickey, P., and Stacy, M. (2016). Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease. Frontiers in neuroscience 10, 173.
    Hosp, J.A., and Luft, A.R. (2013). Dopaminergic meso-cortical projections to m1: role in motor learning and motor cortex plasticity. Front Neurol 4, 145.
    Hosp, J.A., Pekanovic, A., Rioult-Pedotti, M.S., and Luft, A.R. (2011). Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci 31, 2481-2487.
    Huda, K., Salunga, T.L., and Matsunami, K. (2001). Dopaminergic inhibition of excitatory inputs onto pyramidal tract neurons in cat motor cortex. Neuroscience letters 307, 175-178.
    Hunter, C.B., Aguilar, L.G., Nashatizadeh, M.M., Lay, L.F., and Jankovic, J. (2008). Evaluation of a Parkinson's disease screening questionnaire for use in a community-based setting. Movement Disord 23, S361-S361.
    Iancu, R., Mohapel, P., Brundin, P., and Paul, G. (2005). Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice. Behav Brain Res 162, 1-10.
    Jankovic, J., and Aguilar, L.G. (2008). Current approaches to the treatment of Parkinson's disease. Neuropsychiatric disease and treatment 4, 743-757.
    Jenkinson, N., and Brown, P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends in neurosciences 34, 611-618.
    Jurkiewicz, M.T., Gaetz, W.C., Bostan, A.C., and Cheyne, D. (2006). Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. NeuroImage 32, 1281-1289.
    Kang, G., and Lowery, M.M. (2014). Effects of antidromic and orthodromic activation of STN afferent axons during DBS in Parkinson's disease: a simulation study. Frontiers in computational neuroscience 8, 32.
    Katzenschlager, R., Costa, D., Gerschlager, W., O'Sullivan, J.D., Lees, A.J., and Brown, P. (2002). Dopamine transporter imaging with I-123-FP-CIT SPECT demonstrates marked presynaptic nigrostriatal dopaminergic deficit in orthostatic tremor. Movement Disord 17, S346-S346.
    Katzenschlager, R., and Lees, A.J. (2002). Treatment of Parkinson's disease: levodopa as the first choice. Journal of neurology 249 Suppl 2, II19-24.
    Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D.L., and Carandini, M. (2009). Local origin of field potentials in visual cortex. Neuron 61, 35-41.
    Kawashima, S., Ueki, Y., Mima, T., Fukuyama, H., Ojika, K., and Matsukawa, N. (2013). Differences in dopaminergic modulation to motor cortical plasticity between Parkinson's disease and multiple system atrophy. PLoS One 8, e62515.
    Kita, T., and Kita, H. (2012). The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J Neurosci 32, 5990-5999.
    Kuriakose, R., Saha, U., Castillo, G., Udupa, K., Ni, Z., Gunraj, C., Mazzella, F., Hamani, C., Lang, A.E., Moro, E., et al. (2010). The nature and time course of cortical activation following subthalamic stimulation in Parkinson's disease. Cerebral cortex 20, 1926-1936.
    Lang, A.E., and Lozano, A.M. (1998). Parkinson's disease. First of two parts. The New England journal of medicine 339, 1044-1053.
    Lee, K.H., Blaha, C.D., Harris, B.T., Cooper, S., Hitti, F.L., Leiter, J.C., Roberts, D.W., and Kim, U. (2006). Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson's disease. Eur J Neurosci 23, 1005-1014.
    Lee, K.H., Kim, U.J., Park, S.W., Park, Y.G., and Lee, B.H. (2017). Optical Imaging of the Motor Cortex Following Antidromic Activation of the Corticospinal Tract after Spinal Cord Injury. Frontiers in neuroscience 11, 166.
    Lefaucheur, J.P. (2005). [Motor cortex stimulation for Parkinson's disease and dystonia: lessons from transcranial magnetic stimulation? A review of the literature]. Revue neurologique 161, 27-41.
    Lester, D.B., Rogers, T.D., and Blaha, C.D. (2009). Neuronal pathways involved in deep brain stimulation of the subthalamic nucleus for treatment of Parkinson's disease. Conf Proc IEEE Eng Med Biol Soc 2009, 3302-3305.
    Li, Q., Ke, Y., Chan, D.C., Qian, Z.M., Yung, K.K., Ko, H., Arbuthnott, G.W., and Yung, W.H. (2012). Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76, 1030-1041.
    Li, Q., Qian, Z.M., Arbuthnott, G.W., Ke, Y., and Yung, W.H. (2014). Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. JAMA neurology 71, 100-103.
    Li, S., Arbuthnott, G.W., Jutras, M.J., Goldberg, J.A., and Jaeger, D. (2007). Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98, 3525-3537.
    Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J.F., Broussolle, E., Perret, J.E., and Benabid, A.L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345, 91-95.
    Lin, Y.P., Yeh, C.Y., Huang, P.Y., Wang, Z.Y., Cheng, H.H., Li, Y.T., Chuang, C.F., Huang, P.C., Tang, K.T., Ma, H.P., et al. (2016). A Battery-Less, Implantable Neuro-Electronic Interface for Studying the Mechanisms of Deep Brain Stimulation in Rat Models. IEEE Trans Biomed Circuits Syst 10, 98-112.
    Lindenbach, D., and Bishop, C. (2013). Critical involvement of the motor cortex in the pathophysiology and treatment of Parkinson's disease. Neuroscience and biobehavioral reviews 37, 2737-2750.
    Little, S., and Brown, P. (2014). The functional role of beta oscillations in Parkinson's disease. Parkinsonism & related disorders 20 Suppl 1, S44-48.
    Luft, A.R., and Schwarz, S. (2009). Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 27, 415-421.
    Martinez-Ramirez, D., Hu, W., Bona, A.R., Okun, M.S., and Wagle Shukla, A. (2015). Update on deep brain stimulation in Parkinson's disease. Translational neurodegeneration 4, 12.
    Mathai, A., and Smith, Y. (2011). The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 5, 64.
    Mattay, V.S., Tessitore, A., Callicott, J.H., Bertolino, A., Goldberg, T.E., Chase, T.N., Hyde, T.M., and Weinberger, D.R. (2002). Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol 51, 156-164.
    McGonigle, P. (2014). Animal models of CNS disorders. Biochemical pharmacology 87, 140-149.
    Meissner, W., Harnack, D., Reese, R., Paul, G., Reum, T., Ansorge, M., Kusserow, H., Winter, C., Morgenstern, R., and Kupsch, A. (2003). High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85, 601-609.
    Min, H.K., Ross, E.K., Jo, H.J., Cho, S., Settell, M.L., Jeong, J.H., Duffy, P.S., Chang, S.Y., Bennet, K.E., Blaha, C.D., et al. (2016). Dopamine Release in the Nonhuman Primate Caudate and Putamen Depends upon Site of Stimulation in the Subthalamic Nucleus. J Neurosci 36, 6022-6029.
    Moro, E., Scerrati, M., Romito, L.M., Roselli, R., Tonali, P., and Albanese, A. (1999). Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology 53, 85-90.
    Murer, M.G., Tseng, K.Y., Kasanetz, F., Belluscio, M., and Riquelme, L.A. (2002). Brain oscillations, medium spiny neurons, and dopamine. Cellular and molecular neurobiology 22, 611-632.
    Murrow, R.W. (2014). Penfield's Prediction: A Mechanism for Deep Brain Stimulation. Front Neurol 5, 213.
    Naoi, M., and Maruyama, W. (1999). Cell death of dopamine neurons in aging and Parkinson's disease. Mechanisms of ageing and development 111, 175-188.
    Niccolini, F., Wilson, H., Giordano, B., Diamantopoulos, K., Pagano, G., Chaudhuri, K.R., and Politis, M. (2017). Non-motor symptom burden is associated with thalamic atrophy in Parkinson's disease. Movement Disord 32.
    O'Donnell, P. (2003). Dopamine gating of forebrain neural ensembles. Eur J Neurosci 17, 429-435.
    Oertel, W., and Schulz, J.B. (2016a). Current and experimental treatments of Parkinson disease: A guide for neuroscientists. Journal of neurochemistry 139 Suppl 1, 325-337.
    Oertel, W., and Schulz, J.B. (2016b). Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem 139, 325-337.
    Oueslati, A., Sgambato-Faure, V., Melon, C., Kachidian, P., Gubellini, P., Amri, M., Kerkerian-Le Goff, L., and Salin, P. (2007). High-frequency stimulation of the subthalamic nucleus potentiates L-DOPA-induced neurochemical changes in the striatum in a rat model of Parkinson's disease. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 2377-2386.
    Pahwa, R., Wilkinson, S., Smith, D., Lyons, K., Miyawaki, E., and Koller, W.C. (1997). High-frequency stimulation of the globus pallidus for the treatment of Parkinson's disease. Neurology 49, 249-253.
    Pinsker, M., Amtage, F., Berger, M., Nikkhah, G., and van Elst, L.T. (2013). Psychiatric side-effects of bilateral deep brain stimulation for movement disorders. Acta neurochirurgica Supplement 117, 47-51.
    Prokopenko, V.F., Pawlak, A.P., and West, M.O. (2004). Fluctuations in somatosensory responsiveness and baseline firing rates of neurons in the lateral striatum of freely moving rats: effects of intranigral apomorphine. Neuroscience 125, 1077-1082.
    Quinn, E.J., Blumenfeld, Z., Velisar, A., Koop, M.M., Shreve, L.A., Trager, M.H., Hill, B.C., Kilbane, C., Henderson, J.M., and Bronte-Stewart, H. (2015). Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation. Movement disorders : official journal of the Movement Disorder Society 30, 1750-1758.
    Raghanti, M.A., Stimpson, C.D., Marcinkiewicz, J.L., Erwin, J.M., Hof, P.R., and Sherwood, C.C. (2008). Cortical dopaminergic innervation among humans, chimpanzees, and macaque monkeys: a comparative study. Neuroscience 155, 203-220.
    Raz, A., Vaadia, E., and Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 8559-8571.
    Recasens, A., Dehay, B., Bove, J., Carballo-Carbajal, I., Dovero, S., Perez-Villalba, A., Fernagut, P.O., Blesa, J., Parent, A., Perier, C., et al. (2014). Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Annals of neurology 75, 351-362.
    Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S.N., Israel, Z., Vaadia, E., and Bergman, H. (2011). Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, 370-384.
    Salmelin, R., Hamalainen, M., Kajola, M., and Hari, R. (1995). Functional segregation of movement-related rhythmic activity in the human brain. NeuroImage 2, 237-243.
    Sanes, J.N., and Donoghue, J.P. (2000). Plasticity and primary motor cortex. Annual review of neuroscience 23, 393-415.
    Shaw, F.Z. (2004). Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity? Journal of neurophysiology 91, 63-77.
    Shepherd, G.M. (2013). Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 14, 278-291.
    Sidiropoulos, C., LeWitt, P.A., Odekerken, V.J., Schuurman, P.R., and de Bie, R.M. (2016). GPi vs STN deep brain stimulation for Parkinson disease: Three-year follow-up. Neurology 87, 745-746.
    Siegfried, J., and Shulman, J. (1987). Deep brain stimulation. Pacing and clinical electrophysiology : PACE 10, 271-272.
    Sillay, K.A., Sani, S., and Starr, P.A. (2010). Deep brain stimulation for medically intractable cluster headache. Neurobiology of disease 38, 361-368.
    Staal, J.A., Alexander, S.R., Liu, Y., Dickson, T.D., and Vickers, J.C. (2011). Characterization of cortical neuronal and glial alterations during culture of organotypic whole brain slices from neonatal and mature mice. PLoS One 6, e22040.
    Stern, M.B., Lang, A., and Poewe, W. (2012). Toward a redefinition of Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society 27, 54-60.
    Surmeier, D.J., Guzman, J.N., Sanchez-Padilla, J., and Goldberg, J.A. (2010). What causes the death of dopaminergic neurons in Parkinson's disease? Progress in brain research 183, 59-77.
    Tass, P.A., Qin, L., Hauptmann, C., Dovero, S., Bezard, E., Boraud, T., and Meissner, W.G. (2012). Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Annals of neurology 72, 816-820.
    Torres, E.M., Lane, E.L., Heuer, A., Smith, G.A., Murphy, E., and Dunnett, S.B. (2011). Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. J Neurosci Methods 200, 29-35.
    Ueno, T., Yamada, J., Nishijima, H., Arai, A., Migita, K., Baba, M., Ueno, S., and Tomiyama, M. (2014). Morphological and electrophysiological changes in intratelencephalic-type pyramidal neurons in the motor cortex of a rat model of levodopa-induced dyskinesia. Neurobiology of disease 64, 142-149.
    Vitrac, C., Peron, S., Frappe, I., Fernagut, P.O., Jaber, M., Gaillard, A., and Benoit-Marand, M. (2014). Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors. Front Neural Circuits 8, 13.
    Voelker, C.C., Garin, N., Taylor, J.S., Gahwiler, B.H., Hornung, J.P., and Molnar, Z. (2004). Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex 14, 1276-1286.
    Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology : official journal of the Japanese Society of Neuropathology 27, 494-506.
    Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsker, M.O., Krause, M., Tronnier, V., Kloss, M., Schnitzler, A., et al. (2008). Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study. The Lancet Neurology 7, 605-614.
    Xu, D.S., and Ponce, F.A. (2017). Deep Brain Stimulation for Alzheimer's Disease. Current Alzheimer research 14, 356-361.
    Yamamoto, T., Uchiyama, T., Sakakibara, R., Taniguchi, J., and Kuwabara, S. (2014). The subthalamic activity and striatal monoamine are modulated by subthalamic stimulation. Neuroscience 259, 43-52.
    Yang, C., Zhang, J.R., Chen, L., Ge, S.N., Wang, J.L., Yan, Z.Q., Jia, D., Zhu, J.L., and Gao, G.D. (2015). Decreased HCN2 expression in STN contributes to abnormal high-voltage spindles in the cortex and globus pallidus of freely moving rats. Brain research 1618, 17-28.
    Zanjani, A., Zakzanis, K.K., Daskalakis, Z.J., and Chen, R. (2015). Repetitive transcranial magnetic stimulation of the primary motor cortex in the treatment of motor signs in Parkinson's disease: A quantitative review of the literature. Movement disorders : official journal of the Movement Disorder Society 30, 750-758.

    QR CODE