簡易檢索 / 詳目顯示

研究生: 黃聖博
Huang, Sheng-Po.
論文名稱: 運用整合型微流體系統進行自動化快速且高通量之卵巢癌臨床組織檢體染色
An integrated microfluidic system for rapid, automatic and high-throughput staining of clinical tissue samples for diagnosis of ovarian cancer
指導教授: 李國賓
Lee, Gwo-Bin.
口試委員: 陳致真
Chen, Chih-Chen.
許耿福
Hsu, Keng-Fu.
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 86
中文關鍵詞: 臨床組織染色微流體免疫組織化學染色法適體微型幫浦微型混合器卵巢癌
外文關鍵詞: Clinical tissue staining, Microfluidic chip, Immunohistochemistry, Aptamer, Micro-pump, Micro-mixer, Ovarian cancer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據世界衛生組織的統計,光是在2018年,就有1810萬人罹患癌症並且有960萬人死於癌症當中,這也使得癌症成為全球致死率第二高的疾病。因此,為了提高癌症病人的存活率,發展一套有效率且精確的系統用於癌症診斷以利採用後續適當的治療方案,是非常重要的議題。在眾多癌症檢測方式當中,由於免疫組織化學染色法擁有快速且高度專一性這些特點,在臨床試驗上最為經常被使用來檢測惡性腫瘤細胞。然而,免疫組織化學染色法在臨床檢測當中還是面臨著一些挑戰。舉例來說,免疫組織化學染色法是相對來說較為耗時並且需要眾多繁複的步驟去完成的實驗。此外,也需要訓練有素的臨床檢驗人員去呈現穩定且可信的組織染色實驗。而儘管在微流體領域當中,已經有團隊也致力於開發晶片上的組織免疫染色,但是自動化的組織免疫染色平台目前仍未被實現。因此,根據目前臨床上的需求,本研究開發了一套整合型的微流體系統,能夠運用石蠟包埋組織並且以適體為基底來呈現螢光染色和免疫組織染色實驗用於診斷卵巢癌整體實驗部分,包含組織預處理以及染色步驟,只需要兩個小時,比傳統臨床染色方式快了一倍。此外,我們可以使用490 µL的試劑同時染十片組織,來達成高通量的染色結果。因此,此套新型微流體系統,可以作為強而有力的工具,用於診斷癌症,為臨床領域帶來重大的改變。


    According to the World Health Organization (WHO), in 2018 about 18.1 million new cancer cases were lodged and about 9.6 million deaths were reported which made cancer the second preeminent cause of death worldwide. Therefore, there is immense importance in developing an efficient and precise method for diagnosing cancer and implement proper therapeutic strategies for increasing the chance of survival. In comparison with some other cancer detection methods, immunohistochemistry (IHC) is one of the most commonly and widely used in clinical tests for the diagnosis of abnormal tissues such as cancerous tumors due to its quick and high specificity features. However, there are still challenges as it is relatively labor-intensive, time-consuming process steps which require well-trained technicians to produce consistent and reliable staining results. Even though there were some previously reported articles which demonstrated IHC staining using microfluidic platforms but none of them had achieved full-automation yet. Therefore, considering the current demand we demonstrated an integrated microfluidic platform capable of performing the entire process for aptamer-based fluorescence and aptamer-based IHC staining of formalin-fixed paraffin embedded tissue samples for diagnosis of ovarian cancer. The entire pretreatment and staining procedure could be completed within 2 hours, which is 50% faster than conventional approach. Moreover, ten tissue sections could be simultaneously stained by only using 490 µL of reagents to achieve high throughput staining process. Thus, this newly designed microfluidic device brings significant promise to serve as a powerful tool for clinical diagnosis of cancer.

    Table of contents Acknowledgments I Abstract III 中文摘要 V Table of contents VI List of Figures VIII List of tables XII Nomenclature and abbreviations XIII Chapter 1 Introduction 1 1.1 Cancer 1 1.2 Cancer diagnosis methods 3 1.3 Comparison of nucleic acid aptamers and antibodies 5 1.4 Microfluidic chip 7 1.5 Microfluidic chip for clinical tissue staining 9 1.6 Motivation and novelty 11 Chapter 2 Materials and methods 13 2.1. Chip design and fabrication process 13 2.2. Custom-made air control system and temperature control module 18 2.3. Working principle and experimental procedures 20 2.3.1 Working principle 20 2.4 Tissue preparation 32 2.5 FFPET pretreatment process 32 2.6 On-chip aptamer-based IHC staining process 33 2.7 On-chip aptamer-based fluorescent staining process 34 2.8 H-score measurement for IHC staining image 36 2.9 Image acquisition and analysis for fluorescent staining 36 Chapter 3 Results and discussion…………………………...38 3.1 Characterization of the integrated microfluidic system 38 3.1.2 Mixing index of the micro-stirrer 42 3.2 Temperature performance of the temperature control module 45 3.3 Aptamer-based fluorescence staining 49 3.4 Optimization of operation conditions for on-chip IHC staining 55 3.5 On-chip Aptamer-based IHC staining 59 3.6 Assessment of on-chip aptamer-based assay at different incubation time 67 3.7 Uniformity testing of normal tissue sample by using integrated microfluidic system 71 3.8 Blind testing for on chip clinical tissue staining 73 Chapter 4 Conclusions and future prospective 75 4.1 Conclusions 75 4.2 Future prospective 77 Optimization of the operating conditions on the microfluidic system 77 Verification of clinical tissue samples 77 References 79

    1. Hung, L.Y., Fu, C.Y., Microfluidic platforms for rapid screening of cancer affinity reagents by using tissue samples. Biomicrofluidics, 2018. 12(5): p. 054108.
    2. Shakespeare, W., The Psychosocial Impact of Cancer on the Individual, Family, and Society. Cancer Res Treat, 2013.45(3): p.226-223
    3. Bray, F., Ferly, J., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2018. 68(6): p. 394-424.
    4. Stratton, M.R., Campbell, P.J. l, and Futreal, P.A., The cancer genome. Nature, 2009. 458(7239): p. 719-24
    5. Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309-314.
    6. Slooten, H.V., Schaberg, A., Morphologic characteristics of benign and malignant adrenocortical tumors. Cancer, 1985. 55(4): p. 766-773.
    7. Torre, L.A., Trabert, B., Ovarian cancer statistics, 2018. CA: a cancer journal for clinicians, 2018. 68(4): p. 284-296.
    8. Desai, A., Xu, J., Epithelial ovarian cancer: An overview. World journal of translational medicine, 2014. 3(1): p. 1-8.
    9. Reid, B.M., Permuth, J.B, and Sellers, T.A., Epidemiology of ovarian cancer: a review. Cancer biology & medicine, 2017. 14(1): p. 9-32.
    10. Smith, C.G., A Resident’s Perspective of Ovarian Cancer. Diagnostics, 2017. 7(2): p. 24-36.
    11. Colombo, N., Lorusso, D., and Scollo, P., Impact of recurrence of ovarian cancer on quality of life and outlook for the future. International Journal of Gynecological Cancer, 2017. 27(6): p. 1134-1140.
    12. Schiffman, J.D., Fisher, P.G. and Gibbs, P.,Early detection of cancer: past, present, and future. Am Soc Clin Oncol Educ Book, 2015. 35: p. 57-65.
    13. Hiom, S., Diagnosing cancer earlier: reviewing the evidence for improving cancer survival.Nature Publishing Group, 2015. 112(Suppl 1): p. S1-S5
    14. Garvey, C.J., Hanlon, R., Computed tomography in clinical practice. British Medical Journal, 2002. 324(7345): p. 1077-1080.
    15. Bhattacharyya, D., Bandyopadhyay, S.K. and Kim, T.h., Diagnosis of breast cancer by tissue analysis. Chinese journal of cancer research, 2013. 25(1): p. 39-45
    16. Fred, H.L., Drawbacks and limitations of computed tomography: views from a medical educator. Texas Heart Institute Journal, 2004. 31(4): p. 345-348.
    17. Genc, A., Małgorzata, R., Ultrasound imaging in the general practitioner's office–a literature review. Journal of ultrasonography, 2016. 16(64): p. 78-86.
    18. Cheung, M.K. Ong, S.Y., False Positive Positron Emission Tomography/Computed Tomography Scans in Treated Head and Neck Cancers. Cureus, 2017. 9(4):p.e1146
    19. Long, N.M., Smith, C.S., Causes and imaging features of false positives and false negatives on 18 F-PET/CT in oncologic imaging. Insights into imaging, 2011. 2(6): p. 679-698.
    20. Alturkistani, H.A., Tashkandi, F.M. and Mohammedsaleh, Z.M., Histological stains: a literature review and case study. Global journal of health science, 2016. 8(3): p. 72-9.
    21. De Matos, L.L., Trufelli, D.C., Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomarker insights, 2010. 5: p. 9-20
    22. Woodard, H., White, D., The composition of body tissues. The British journal of radiology, 1986. 59(708): p. 1209-1218.
    23. Quail, D.F., Joyce, J.A., Microenvironmental regulation of tumor progression and metastasis. Nature medicine, 2013. 19(11): p. 1423-37.
    24. Ramos-Vara, J.A., Principles and methods of immunohistochemistry, in Drug Safety Evaluation. Methods in Molecular Biology, 2011.691: p. 83-96.
    25. Key, M., Immunohistochemistry Staining Methods. Education Guide Immunohistochemical Staining Methods Fourth Edition, 2006: p. 47-49.
    26. Kim, S.W., Roh, J. and Park, C.S., Immunohistochemistry for pathologists: protocols, pitfalls, and tips. Journal of pathology and translational medicine, 2016. 50(6): p. 411-418.
    27. Prichard, J.W., Overview of automated immunohistochemistry. Archives of pathology & laboratory medicine, 2014. 138(12): p. 1578-1582.
    28. Abell, C.W., Denney, R.M., Application of monoclonal antibodies in basic research, diagnosis, and therapy. Journal of natural products, 1985. 48(2): p. 193-202.
    29. Kelly, B., Levy, J. and Sikora, L., The use of the enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of specific antibody from cell cultures. Immunology, 1979. 37(1): p. 45-52
    30. Mighell, A., Hume, W. and Robinson, P., An overview of the complexities and subtleties of immunohistochemistry. Oral diseases, 1998. 4(3): p. 217-223.
    31. Song, K.M., Lee, S. Lee, and Ban, C., Aptamers and their biological applications. Sensors, 2012. 12(1): p. 612-631.
    32. Blind, M., Blank, M., Aptamer selection technology and recent advances. Molecular Therapy-Nucleic Acids, 2015. 4: p. e223.
    33. Caruthers, M., Barone, A., Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method, Methods in enzymology. 1987,154: p. 287-313.
    34. Mayer, G., Wulffen, B., The Chemical Biology of Aptamers: Synthesis and Applications. The Chemical Biology of Nucleic Acids, 2010: p. 377-400.
    35. Ruscito, A., DeRosa, M.C., Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in chemistry, 2016. 4: p. 14-26.
    36. Breen, E., Curley, J.G., Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharmaceutical research, 2001. 18(9): p. 1345-1353.
    37. Ni, S., Yao, H., Chemical modifications of nucleic acid aptamers for therapeutic purposes. International journal of molecular sciences, 2017. 18(8): p. E1683
    38. Lakhin, A., Tarantul, V. and Gening, L., Aptamers: problems, solutions and prospects. Acta Naturae, 2013. 5(4): p. 34-43
    39. Gening, L.V., Klincheva, SA., RNA aptamers selected against DNA polymerase β inhibit the polymerase activities of DNA polymerases β and κ. Nucleic acids research, 2006. 34(9): p. 2579-2586.
    40. Figeys, D., Pinto, D., Lab-on-a-chip: a revolution in biological and medical sciences. Analytical Chemistry, 2000.72(9):p.330A-335A
    41. Gravesen, P., Pinto, J. and Jensen, O.S., Microfluidics-a review. Journal of micromechanics and microengineering, 1993. 3(4): p. 168-169.
    42. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-73.
    43. Kwon, S., Cho, C., A Microfluidic Immunostaining System Enables Quality Assured and Standardized Immunohistochemical Biomarker Analysis. Scientific Reports, 2017. 7: p. 45968.
    44. Kim, S., Kwon S., Pipetting-driven microfluidic immunohistochemistry to facilitate enhanced immunoreaction and effective use of antibodies. Lab on a Chip, 2017. 17(4): p. 702-709.
    45. Brajkovic, S., Dupouy, D.G., Microfluidics for rapid cytokeratin immunohistochemical staining in frozen sections. Laboratory Investigation, 2017. 97(8): p. 983-991.
    46. Chin, S., Daigo, Y., A simple and reliable pretreatment protocol facilitates fluorescent in situ hybridisation on tissue microarrays of paraffin wax embedded tumour samples. Molecular Pathology, 2003. 56(5): p. 275-9.
    47. Boyle, P., Global burden of cancer. The Lancet, 1997. 349: p. S23-S26.
    48. Reverberi, R., Reverberi, L., Factors affecting the antigen-antibody reaction. Blood Transfusion, 2007. 5(4): p. 227-240.
    49. Shi, S.R., Key, M.E. and Kalra, K.L., Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. Journal of Histochemistry & Cytochemistry, 1991. 39(6): p. 741-748.
    50. Cors, J.F., Kashyap, A., Tissue lithography: Microscale dewaxing to enable retrospective studies on formalin-fixed paraffin-embedded (FFPE) tissue sections. PloS one, 2017. 12(5): p. e0176691.
    51. Yang, S.Y., Lin, J.L. and Lee, G.B., A vortex-type micromixer utilizing pneumatically driven membranes. Journal of Micromechanics and Microengineering, 2009. 19(3): p. 035020.
    52. Choudhury, K.R., Yagle, K.J., A robust automated measure of average antibody staining in immunohistochemistry images. Journal of Histochemistry & Cytochemistry, 2010. 58(2): p. 95-107.
    53. Huang, C.W., Huang, S.B. and Lee, G.B., Pneumatic micropumps with serially connected actuation chambers. Journal of micromechanics and microengineering, 2006. 16(11): p. 2265.
    54. Suh, Y.K., Kang, S., A review on mixing in microfluidics. Micromachines, 2010. 1(3): p. 82-111.
    55. Weng, C.H., Lien, K.Y., A suction-type, pneumatic microfluidic device for liquid transport and mixing. Microfluidics and nanofluidics, 2011. 10(2): p. 301-310.
    56. Song, S., Wang, L., Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 2008. 27(2): p. 108-117.
    57. Bankhead, P., Analyzing fluorescence microscopy images with ImageJ. ImageJ, 2014. 1: p. 195-197.

    QR CODE