簡易檢索 / 詳目顯示

研究生: 張炳章
Bin-chang Chang
論文名稱: 釤鈰銅氧化合物系統中金屬絕緣體轉變、磁性、比熱及超導性質之研究
Metal-insulator Transition, Magnetism, Specific Heat, and Superconductivity in Sm2-xCexCuO4+d Systems
指導教授: 古煥球
Huan-chiu Ku
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 56
中文關鍵詞: 高溫超導體金屬絕緣體轉變磁性比熱氧含量X光吸收光譜
外文關鍵詞: high Tc superconductor, metal-insulator transition, magnetism, specific heat, oxygen content, x-ray absorption spectra (XAS)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將討論釤鈰銅氧化合物(Sm2-xCexCuO4+d )系統之金屬絕緣體轉變與化合物中氧含量之間的關係及其超導相(Sm1.85Ce0.15CuO4+d )的d波偶對稱超導性質。
    常壓下相穩定的釤鈰銅氧化合物系統中,在空氣中燒結為金屬氧化物,此化合物低溫為反鐵磁序結構,在外加1 kG的磁場下,釤銅氧化合物(Sm2CuO4+d )的反鐵磁序轉變溫度TN(Sm)為 6.0 K,而釤鈰銅氧化合物(Sm1.85Ce0.15CuO4+d)的反鐵磁序轉變溫度TN(Sm/Ce)為 4.6 K,對於摻雜7.5%鈰(Ce)的Sm1.85Ce0.15CuO4+d 樣本經退火處理後可得到超導轉變溫度Tc = 24 K的高溫電子氧化物超導體。在此一系統中,我們將研究其結構、磁性、比熱及電性等性質,並且觀察到超導絕緣體相轉變發生在氧含量d = 0.05附近。

    為了確認高溫電子超導體的電子偶對稱性,我們選擇在磁場下排序過的24K超導的釤鈰銅氧化合物(Sm1.85Ce0.15CuO3.98) 粉末樣本做更進一步的測量。經由測量磁場垂直銅氧平面的磁化率對溫度的關係,我們可以理論計算出在銅氧平面上的磁場穿透深度lab與溫度的關係。測量結果發現,樣本中的銅氧平面穿透深度lab變化量與溫度平方項相關,這是晶體中的氧分佈不均勻所導致的。


    Abstract
    In this article, we studied on metal-insulator transition with oxygen content parameter d in the Sm2-xCexCuO4+d systems. We studied the d-wave pairing symmetry for the Sm2-xCexCuO4+d systems further.

    In the Sm2-xCexCuO4+d systems, the antiferromagnetic order of Sm3+ is 6.0 K for x = 0, and 4.6 K for x=0.15 in 1 kG applied magnetic field. After oxygen-reduced the as-sintered Sm1.85Ce0.15CuO4+d sample change to superconductor with Tc = 24 K. The crystal structure, magnetism, specific heat, and electric property were discussed in this system. A superconductor-insulator transition around d = 0.05 was observed.

    In order to confirm the pairing state of the high Tc electron doped superconductor Sm1.85Ce0.15CuO4+d was chosen for further study. We use a c-axis alignment power method and particle distribution to calculate the penetration depth function of temperature lab(T) for vertical CuO2 planes of applied field. The temperature dependence of penetration depth change shows a linear power law component. The linear term show that wave equation was d-wave symmetry, but our data with larger T2 term show the inhomogenous oxygen content, disorder-scatter dirty d-wave-like T2 law.

    Abstract (Chinese) I Abstract (English) II Contents III List of Figures and Tables V Acknowledgments (Chinese/English) VIII Chapter 1 Introduction 1 1.1 Historical Review of the superconductivity 1 1.2 Historical Review of the electron-doped superconductor 3 1.3 Superconductivities of the Sm1.85Ce0.15CuO4+d systems 6 Chapter 2 Experimental Details 9 2.1 Sample Preparation 9 2.2 Thermogravitometer and Differential Thermal Analysis 11 2.3 Powder X-ray Diffraction Measurement 11 2.4 X-ray Absorption Spectra Measurement 11 2.5 Magnetization and Magnetic Susceptibility Measurement 14 2.6 Electrical Resistivity Measurement 16 2.7 Powder Alignment 17 2.8 Specific Heat Measurement 19 2.9 Oxygen content parameter determination 19 Chapter 3 Results and Discussion 21 3.1 Structural analysis 21 3.1 X-ray Absorption Spectra analysis (XAS) 27 3.2 Magnetic Properties and Specific Heat 30 3.3 Electric Property 39 3.4 Metal-insulator Transition with Oxygen content d 41 3.5 Paring Symmetry 43 Chapter 4 Conclusion 52 References 54 Appendix 56

    [1] Michael Tikham, Introduction to Superconductivity, second edition (1996).
    [2] Ashcroft, Neil W., Solid State Physics (1976).
    [3] C. C. Chi, Note on course of Solid State Physics in dept. of phys, NTHU (1999).
    [4] J. G. Bednorz and K. A. Müller, Z. Phys. B64, 189 (1986).
    [5] Muller-Buschbaum, H. Angew. Chem. Int. Edn Engl. 16, 674.
    [6] Hiroshi Sawa, Seiichiro Suzuki, Masaru Watabnabe, Jun Akimitsu, Hadeki Matsibara, Hajime Watabe, Shin-ichi Uchida, Koichi Kokusho, Hajime Asano, Fujio Izumi, & Eiji Takayama-Muromachi, Nature (London) 337, 347 (1989).
    [7] Y. Tokura, H. Takagi, and S. Uchida, Nature (London) 337, 345 (1989).
    [8] H. Takagi, S. Uchida, and Y. Tokura, Phys. Rev. Lett. 62, 1197 (1989).
    [9] J. T. Markert, E. A. Early, T. Bjørnholm, S. Ghamaty, B. W. Lee, J. J. Neumeier, R. D. Price, C. L. Seaman, and M. B. Maple, Physica C 158, 178 (1989).
    [10] J. T. Markert and M. B.Maple, Solid State Commun., 70, 145 (1989).
    [11] A. C. W. P. James, S. M. Zahurak, and D. W. Murphy, Nature (London) 338, 240 (1989).
    [12] E. A. Early, N. Y. Ayoub, J. Beille, J. T. Markert, and M. B. Maple, Physica C 160, 320 (1989).
    [13] D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).
    [14] J. R. Kirtley, C. C. Tsuei, J. Z. Sun, C. C. Chi, Locks See Yu-Jahnes, A. Gupta, M. Rupp & M. B. Ketchen, Nature 373, 225 (1995).
    [15] C. C. Tsuei, J. R. Kirtley, M. Rupp, J. Z. Sun, C. C. Chi, A. Gupta, Locks See Yu-Jahnes, and M. B. Ketchen, Physica C 263, 232 (1996).
    [16] F. Gross, B. S. Chandrasekhar, D. Einzel, K. Andres, P. J. Hirschfeld, H. R. Ott, J. Beuers, Z. Fisk, and J. L. Smith, Z. Phys. B 64, 175 (1986). J. F. Annett, N. D. Goldenfeld, and S. R. Renn, in Physical Properties of High Temperature Super- conductors II, edit by D. M. Ginsberg (World Scientific, New York, 1990) p.571
    [17] C. C. Tsuei and J. R. Kirtkey, Phys. Rev. Lett. 85, 182 (2000), and Rev. Mod. Phys. 72, 969 (2000).
    [18] H. C. Chiang, Y. Y. Hsu, B. C. Chang, B. N. Lin, T. I. Hsu, and H. C. Ku, J. Appl. Phys., in press (2001).
    [19] T. Sato, T. Kamiyama, T. Takahashi, K. Kurahashi, and K. Yamada, Science. 291 1517 (2001).
    [20] J. R. Cooper, Phys. Rev. B 54, 3753 (1996).
    [21] D.E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Fiinnemore, Phys. Rev. B 36, 4025 (1987).
    [22] E. H. Appelman, L. R. Morss, A. M. Kini, U. Geiser, A. Umezawa, G. W. Crabtree, and K. D. Carlson, Inorg. Chem. 26, 3273 (1987).
    [23] H. Takeda, m. Okuno, M. Ohgaki, K. Yamashita, and T. matsumoto, J. Mater. Res., 15, 1905 (2000).
    [24] E. E. Alp, S. M. Mini, M. Ramanathan, B. Dabrowski, D. R. Richards, and D. G. Hinks, Phys. Rev. B 40, 2617 (1989).
    [25] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).
    [26] M. F. Hundley, J. D. Thompson, S-W. Cheong, Z. Fisk, and S. B. Oseroff, Physica C. 158, 1174 (1989).
    [27] C. L. Seaman, N. Y. Ayoub, T. Bjørnholm, E. A. Early, S. Ghamaty, B. W. Lee, J. T. Markert, J. J. Neumeier, P. K. Tsai, and M. B. Maple, Physica C 159, 391 (1989).
    [28] J. H. Van Vleck, theory of Electric and Magnetic Susceptibility, Oxford University Press, Oxford (1932), p. 233.
    [29] M. B. Maple, N. Y. Ayoub, T. Bjørnholm, E. A. early, S. Ghamary, B. W. Lee, J. T. Markert, J. J. Neumeier, and C. L. Seaman, Physica C 162-164, 296 (1989).
    [30] Y. Dalichaouch, B. W. Lee, C. L. Seaman, J. T. Markert, and M. B. Maple, Phys. Rev. Lett. 64, 599 (1990).
    [31] C. C. Almasan, S. H. Han, E.A. Early, B. W. Lee, C. L. Seaman, and M. B. Maple, Phys. Rev. B 45, 1056 (1992).
    [32] R. F. Jardim, L. Ben-Dor, D. Stroud, and M. B. Maple, Phys. Rev. B 50, 10080 (1994).
    [33] H. A. Blackstead, R. F. Jardim, P. Beeli, D. B. Pulling, and A. K. Heilman, Phys. Rev. B 57, 3683 (1998).
    [34] D. Shoenber, Superconductivity (Cambridge University Press, CamBridge, 1954) page 164.
    [35] B. Mühlshegel, Zeitschrift für Physik 155, 313 (1959).
    [36] Christos Panagopoluos and Tao Xiang, Phys. Rev. Lett. 81, 2336 (1998).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE