簡易檢索 / 詳目顯示

研究生: 邱繼舜
Chiu,Chi-Shun
論文名稱: 表面聲波感測器結合奈米粒子在生化感測之應用
Biochemical Sensing Using Nanoparticle-based Surface Acoustic Wave Sensors
指導教授: 果尚志
Gwo,Shangjr
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 103
中文關鍵詞: 表面聲波感測器奈米金粒子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米金粒子及DNA-奈米金粒子共軛物分別被固定基板表面形成奈米金粒子自組裝單層膜及功能性奈米金粒子自組裝單層膜。使用有機矽烷作為偶聯劑分別固定奈米金粒子及DNA-奈米金粒子共軛物在鈮酸鋰及二氧化矽鍍層的鉭酸鋰表面的方法已被開發在雷利及波導剪切水平表面聲波感測器的應用上。
    在本研究中,藉由使用高解析度掃描式電子顯微鏡及表面聲波感測器對金奈米粒子的吸附動力學進行比較的量測,使得表面聲波感測器的頻率響應與吸附奈米金粒子的表面密度產生定量的關聯。藉由此方法,奈米金粒子被使用作為奈米砝碼在很大的線性動態範圍內量測質量負載的效應。雷利及波導剪切水平表面聲波感測器分別被使用於氣相與液相監測表面質量的變化。在氣相量測環境中工作頻率113.3 MHz的雷利表面聲波感測器的質量靈敏度(約20 Hz□cm2/ng)比傳統的石英晶體微天平高出100倍以上。此外,亦使用工作頻率121.3 MHz的波導剪切水平表面聲波感測器於奈米金粒子及DNA-奈米金粒子共軛物的吸附動力學的液相原位即時量測。其靈敏度的改善(約6 Hz□cm2/ng)及成功的偵測DNA-奈米金粒子共軛物為基於奈米粒子的表面聲波感測器在生物感測的應用上做準備。
    藉由奈米金粒子固定探針生物分子作為表面聲波感測器的感測膜的方式為生物分析及醫學診斷上提供一個簡單且可再現的方法。實際的應用包括決定結合到直徑10奈米的奈米金粒子上的寡核苷酸數目及DNA偵測。在氣相環境中應用工作頻率135 MHz的氮化鋁薄膜表面聲波感測器在DNA的雜合偵測上,氮化鋁薄膜表面聲波感測器結合直徑10奈米及20奈米的奈米金粒子作為探針寡核苷酸的固定、DNA雜合的標記及訊號的放大。


    Table of Contents 摘要 iii Abstract iv Dedication v Acknowledgements vi Table of Contents vii List of Tables xi List of Figures xii Chapter 1: Introduction 1 1.1 Biosensor 2 1.1.1 Introduction 2 1.1.2 Basic Concepts 3 1.1.3 Common Types of Biosensors 3 1.1.4 Summary 6 1.2 Surface Acoustic Wave Biosensors 7 1.2.1 Introduction 7 1.2.2 Shear Horizontal Surface Acoustic Wave Devices 8 1.2.3 SAW Materials and Design 12 1.3 Nanosensor 12 1.4 Nanotechnology in SAW Biosensors 15 Chapter 2: Gold Nanoparticles and Their Bioconjugates 17 2.1 Gold Nanoparticles 17 2.2 DNA□Gold Nanoparticle Conjugates 19 2.3 Experimental Section 21 2.3.1 Materials 21 2.3.2 Size Distribution and Average Mass of Gold Nanoparticles 21 2.3.3 Preparation of Probe DNA Modified Gold Nanoparticles 23 2.4 Verification for the Functionalization of Gold Nanoparticle by XPS 25 2.5 Results and Discussion 27 Chapter 3: Surface Functionalization of Materials for Biochemical Sensing 31 3.1 Introduction 31 3.2 Aminosilane Functionalization on Piezoelectric Materials 32 3.3 Experimental Section 34 3.3.1 Materials 34 3.3.2 X-ray photoelectron spectroscopy 35 3.4 Results and Discussion 35 3.5 Summary 38 Chapter 4: Characterization of Nanosystems Using Nanoparticle-Based Rayleigh-SAW Sensors 39 4.1 Introduction 40 4.2 Principle of SAW Sensors 43 4.3 Experimental Section 46 4.3.1 Materials and Functionalization of the Sensing Surfaces 46 4.3.2 Adsorption of Gold Nanoparticles 46 4.3.3 Rayleigh-SAW Device Configuration 46 4.4 Results and Discussion 49 4.4.1 Gold Nanoparticle Immobilization 49 4.4.2 Rayleigh-SAW Gas Phase Measurement 52 4.4.3 Comparison of Mass Sensitivities for Various Devices 55 4.5 Applications 56 4.6 Summary 57 Chapter 5: Nanoparticle-based Surface Acoustic Sensors for Biosensing in Liquids 58 5.1 Introduction 58 5.2 SAW Devices for Operation in Liquids 59 5.2.1 SH-mode SAW Sensors 60 5.2.2 Guided SH-SAW Sensors 62 5.3 Fabrication of guided SH-SAW Sensors 63 5.3.1 Transducer Metallization 64 5.3.2 Acoustic Waveguides for Guided SH-SAW Sensors 64 5.3.3 Guided SH-SAW Sensors Based on Lithium Tantalate 65 5.4 Experimental Section 67 5.4.1 Materials 67 5.4.2 Functionalization of the Sensing Surfaces 68 5.4.3 Guided SH-SAW Device Configuration 68 5.4.4 Preparation of Probe DNA Modified Gold Nanoparticles 70 5.4.5 Estimation of Thiolated Oligonucleotides Loaded on Gold Nanoparticles 70 5.5 Results and Discussion 71 Chapter 6: Aluminum Nitride-Based Surface Acoustic Wave Sensors and Biochemical Applications 76 6.1 Introduction 76 6.2 Propagation of Surface Acoustic Waves in Aluminum Nitride Films 78 6.3 Experimental Section 79 6.3.1 Material Growth 79 6.3.2 Fabrication of AlN-Based SAW Devices 81 6.3.3 Characterization of AlN-Based SAW Sensors 83 6.4 Results and Discussion 85 6.5 Future Development of AlN-Based SAW Devices 89 Chapter 7: Conclusions 90 Chapter 8: Perspectives 91 References 92 VITA 103

    References
    Chapter 1
    (1) Turner, A. P. F.; Karube, I.; Wilson, G. S. Biosensors: Fundamentals and Applications, Oxford, Oxford University Press: 1987.
    (2) Mohanty, S. P.; Kougianos, E. Potentials, IEEE 2006, 25, 35–40.
    (3) Campbell, C. K. Surface acoustic wave devices for mobile and wireless communications; Academic Press Inc.: San Diego, CA, 1998.
    (4) Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications ; Academic Press Inc.: San Diego, CA, 1997.
    (5) Wohltjen, H.; Dessy, R. Anal. Chem. 1979, 51, 1458–1464.
    (6) Dorozhkin, L. M.; Rozanov, I. A. J. Anal. Chem. 2001, 56, 399–416.
    (7) Calabrese, G. S.; Wohltjen, H.; Roy, M. K. Anal. Chem. 1987, 59, 833–837.
    (8) Janshoff, A.; Galla, H. J.; Steinem, C. Angew. Chem. 2000, 39, 4004–4032
    (9) Wohltjen, H. Sens. Actuators 1984, 5, 307–325.
    (10) Galipeau, D. W.; Story, P. R.; Vetelino, K. A.; Mileham, R. D. Smart Mater Struct. 1997, 6, 658–667.
    (11) Drobe, H.; Leidl, A.; Rost, M.; Ruge, I. Sens Actuators A. 1993, 37–38, 141–148.
    (12) Flory, C. A.; Baer, R. L. Proc. 1987 Ultrason. Symp. 1987, 313–318.
    (13) Moriizumi, T.; Unno, Y.; Shiokawa, S. Proc. 1987 Ultrason. Symp. 1987, 579–582.
    (14) Baer, R. L.; Flory, C. A.; Tom-Moy, M.; Spira-Solomon, D. Proc. 1992 Ultrason. Symp. 1992, 293–298.
    (15) Inoue, Y.; Kato, Y.; Sato, K. J. Chem. Soc. Faraday Trans. 1992, 88, 449–454.
    (16) Kondoh, J.; Matsui, Y.; Shiokawa, S. Jpn. J. Appl. Phys. 1993, 32, 2376–2379.
    (17) Gizeli, E; Goddard, N. J.; Lowe, C. R.; Stevenson, A. C. Sens Actuators B 1992, 6, 131–137.
    (18) Gizeli, E.; Stevenson, A. C.; Goddard, N. J.; Lowe, C. R. IEEE Trans Ultrason Ferroelectr. Freq. Control. 1992, 39, 657–659.
    (19) Stevenson, A. C.; Gizeli, E.; Goddard, N. J.; Lowe, C. R. Sens Actuators B 1993, 13–14, 635–637.
    (20) Kovacs, G.; Venema, A. Appl Phys Lett 1992, 61, 639–641.
    (21) Kovacs, G.; Lubking, G. W.; Vellekoop, M. J.; Venema, A. Proc IEEE Ultrason Symp 1992, 281–285.
    (22) Kovacs, G.; Vellekoop, M. J.; Haueis, R.; Lubking, G. W.; Venema, A. Sens Actuators A 1994, 43, 38–43.
    (23) Du, J.; Harding, G. L.; Ogilvy, J. A.; Dencher, P. R.; Lake, M. Sens Actuators A 1996, 56, 211–219.
    (24) Harding, G. L.; Du, J.; Dencher, P. R.; Barnett, D.; Howe, E. Sens Actuators A 1997, 61, 279–286.
    (25) Collings, A. F.; Caruso, F. Rep Prog Phys 1997, 60, 1397–1445.
    (26) Länge, K.; Rapp, B. E.; Rapp, M. Anal. Bioanal. Chem.2008, 391, 1509–1519.
    (27) Hur, Y.; Han, J.; Seon, J.; Pak, Y. E.; Roh, Y. Sens Actuators A 2005, 120, 462–467.
    (28) Sakong, J.; Roh, H.; Roh, Y. Jpn. J. Appl. Phys. 2007, 46, 4729–4733.
    (29) Gronewold, T. M. A.; Baumgartner, A.; Quandt, E.; Famulok, M. Anal. Chem. 2006,78, 4865–4871.
    (30) Shimizu, Y. Jpn. J. Appl. Phys. 1993, 32, 2183–2187.
    (31) Bogue, R. W. Sensor Review, 2004, 24, 253–260.
    (32) Khanna, V. K. Sensor Review, 2008, 28, 39–45.
    (33) Staufer, U.; Akiyama, T.; Gullo, M. R.; Han, A.; Imer, R.; de Rooij, N. F.; Aebi, U.; Engel, A.; Frederix, P. L. T. M.; Stolz, M.; Friederich, N. F.; Wirz, D. Microelectronic Engineering, 2007, 84, 1681–1684.
    (34) Xian, Y.; Hu, Y.; Liu, F.; Xian, Y.; Wang, H.; Jin, L. Biosensors &Bioelectronics 2006, 21, 1996-2000.
    (35) Carrascosa, L. G.; Moreno, M.; Salvages, M.; Lechuga, L. M. TrAC Trends in Analytical Chemistry, 2006, 25, 196-206.
    (36) Gould, P. Materials Today, 2007, 10, 10.

    Chapter 2
    (1) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293–346.
    (2) Niemeyer, C. M. Angew. Chem., Int. Ed. 2001, 40, 4128–4158.
    (3) Schmid, G.; Ed. Clusters and Colloids, VCH, Weinheim, 1994.
    (4) Schroedter, A.; Weller, H. Angew. Chem., Int. Ed. 2002, 41, 3218–3221.
    (5) Alivisatos, A. P. Science 1996, 271, 933–937.
    (6) Feldheim, D. L.; Keating, C. D. Chem. Soc. Rev. 1998, 27, 1–12.
    (7) Shipway, A. N.; Katz, E.; Willner, I. ChemPhysChem. 2000, 1, 18–52.
    (8) F. Remacle, R. D. Levine, ChemPhysChem 2001, 2, 21–36.
    (9) Turkevitch, J.; Stevenson, P. C.; Hillier, J. Discuss. Faraday Soc. 1951, 11, 55–75.
    (10) Frens, G. Nature: Phys. Sci. 1973, 241, 20–22.
    (11) Watson, K. J.; Zhu, J.; Nguyen, S. B. T.; Mirkin, C. A. J. Am. Chem. Soc. 1999, 121, 462–463.
    (12) H. Dugas, Bioorganic Chemistry, Springer, New York, 1989.
    (13) Diederichsen, U.; Lindhorst, T. K.; Westermann, B.; Wessjohann, L. A. Bioorganic Chemistry, Wiley-VCH, Weinheim, 1999.
    (14) (a) Yang, X.; Wenzler, L. A.; Qi, J.; Li, X.; Seeman, N. C. J. Am. Chem. Soc. 1998, 120, 9779–9786; (b) Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Nature 1998, 394, 539–544.
    (15) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607–609.
    (16) Patolsky, F.; Ranjit, K. T.; Lichtenstein, A.; Willner, I. Chem. Commun. 2000, 1025–1026.
    (17) Letsinger, R. L.; Elghanian, R.; Viswanadham, G.; Mirkin, C. A. Bioconjugate Chem. 2000, 11, 289–291.
    (18) Demer, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A. III; Letsinger, R. L.; Elghanian, R.; Viswanadham, G. Anal. Chem. 2000, 72, 5535–5541.
    (19) Johnson, S. R.; Evans, S. D.; Mahon, S. W.; Ulman, A. Langmuir 1997, 13, 51–57.
    (20) Kumar, A.; Pattarkine, M.; Bhadbhade, M.; Mandale, A. B.; Ganesh, K. N.; Datar, S. S.; Dharmadhikari, C. V.; Sastry, M. Adv. Mater. 2001, 13, 341–344.
    (21) Heister, K.; Zharnikov, M.; Grunze, M.; Johansson, L. S. O.; Ulman, A. Langmuir 2001, 17, 8–11.
    (22) Heister, K.; Frey, S.; Gölzhäuser, A.; Ulman, A.; Zharnikov, M. J. Phys. Chem. B 1999, 103, 11098–11104.
    (23) Tshida, T.; Hara, M.; Kojima, I.; Tsuneda, S.; Nishida, N.; Sasabe, H.; Knoll, W. Langmuir 1998, 14, 2092–2096.
    (24) Castner, D. G.; Hinds, K.; Grainger, D. W. Langmuir 1996, 12, 5083–5086.
    (25) Laiho, T.; Leiro, J. A.; Lukkari, J. Appl. Surf. Sci. 2003, 212, 525–529
    (26) Zhong, C. J.; Brush, R. C.; Anderegg, J.; Porter, M. D. Langmuir 1999, 15, 518–525.
    (27) Shlyakhtenko, L. S.; Gall, A.; Weimer, J.; Hawn, D. D.; Lyubchenko, Y. L. Biophys. J. 1999, 77, 568–576.
    (28) Sastry, M.; Ramakrishnan, V.; Pattarkine, M.; Ganesh, K. N. J. Phys. Chem. B 2001, 105, 4409–4414.

    Chapter 3
    (1) Ulman, A. Chem. Rev. 1996, 96, 1533–1554.
    (2) Taton, K. S.; Guire, P. E. Colloids Surf. B 2002, 24, 123–132.
    (3) Hu, M.; Noda, S.; Okubo, T.; Yamaguchi, Y.; Komiyama, H. Appl. Surf. Sci. 2001, 181, 307–316.
    (4) Prime, K. L.; Whitesides, G. M. Science 1991, 252, 1164–1167.
    (5) Prime, K. L.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115, 10714–10721.
    (6) Ferretti, S.; Paynter, S.; Russel, D. A.; Sapsford, K. E.; Richardson, D. J.; Trends Anal. Chem. 2000, 19, 530–540.
    (7) Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D. Anal. Chim. Acta 2006, 568, 84–108.
    (8) Brzoska, J. B.; Azouz, I. B.; Rondelez, F. Langmuir 1994, 10, 4367–4373.
    (9) Wasserman, S. R.; Tao, Y.-T.; Whitesides, G. M. Langmuir 1989, 5, 1074–1087.
    (10) Kojio, K.; Ge, S.; Takahara, A.; Kajiyama, T. Langmuir 1998, 14, 971–974.
    (11) Doudevski, I.; Hayes, W. A.; Schwartz, D. K. Phys. Rev. Lett. 1998, 81, 4927–4930.
    (12) Schwartz, D. K.; Steinberg, S.; Israelachvili, J.; Zasadzinski, J. A. N. Phys. Rev. Lett. 1992, 69, 3354–3359.
    (13) Wang, A.; Tang, H.; Cao, T.; Salley, S. O.; Ng, K. Y. J. Colloid Interf. Sci. 2005, 291, 438–447.
    (14) Denoyel, R.; Glez, J. C.; Trens, P. Colloid Surf. A 2002, 197, 213–223.
    (15) Horr, T. J.; Arora, P. S. Colloid Surf. A 1997, 126, 113–121.
    (16) Krasnoslobodtsev, A. V.; Smirnov, S. N. Langmuir 2002, 18, 3181–3184.
    (17) Allen, G. C.; Sorbello, F.; Altavilla, C.; Castorina, A.; Ciliberto, E. Thin Solid Films 2005, 483, 306–311.
    (18) Petri, D. F.; Wenz, G.; Schunk, P.; Schimmel, T. Langmuir 1999, 15, 4520–4523.

    Chapter 4
    (1) Shipway, A. N.; Katz, E.; Willner, I. ChemPhysChem. 2000, 1, 18–52.
    (2) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293–346.
    (3) Penn, S. G.; He, L.; Natan, M. J. Curr. Opin. Chem. Biol. 2003, 7, 609–615.
    (4) Katz, E.; Willner, I. Angew. Chem. Int. Ed. 2004, 43, 6042–6108.
    (5) Fritzsche, W.; Taton, T. A. Nanotechnology 2003, 14, R63–R73.
    (6) Foultier, B.; Moreno-Hagelsieb, L.; Flandre, D.; Remacle, J. IEE Proc.-Nanobiotechnol. 2005, 152, 3–12.
    (7) Zhou, X. C.; O’Shea, S. J.; Li, S. F. Y. Chem. Commun. 2000, 953–954.
    (8) (a) Patolsky, F.; Ranjit, K. T.; Lichtenstein, A.; Willner, I. Chem. Commun. 2000, 1025–1026. (b) Weizmann, Y.; Patolsky, F.; Willner, I. Analyst 2001, 126, 1502–1504. (c) Willner, I.; Patolsky, F.; Weizmann, Y.; Willner, B. Talanta 2002, 56, 847–856.
    (9) (a) Lin, L.; Zhao, H. Q.; Li, J. R.; Tang, J. A. ; Duan, M. X. ; Jiang, L. Biochem. Biophys. Res. Commun. 2000, 274, 817–820. (b) Zhao, H. Q.; Lin, L.; Li, J. R.; Tang, J. A.; Duan, M. X.; Jiang, L. J. Nanopart. Res. 2001, 3, 321–323. (c) Liu, T.; Tang, J.; Zhao, H.; Deng, Y.; Jiang, L. Langmuir 2002, 18, 5624–5626. (d) Liu, T.; Tang, J.; Jiang, L. Biochem. Biophys. Res. Commun. 2004, 313, 3–7.
    (10) Ebara, Y.; Itakura, K.; Okahata, Y. Langmuir 1996, 12, 5165–5170.
    (11) Branch, D. W.; Brozik, S. M. Biosens. Bioelectron. 2004, 19, 849–859.
    (12) Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications ; Academic Press Inc.: San Diego, CA, 1997.
    (13) Campbell, C. K. Surface acoustic wave devices for mobile and wireless communications; Academic Press Inc.: San Diego, CA, 1998.
    (14) Wohltjen, H.; Dessy, R. Anal. Chem. 1979, 51, 1458–1464.
    (15) Wohltjen, H. Sens. Actuators 1984, 5, 307–325.
    (16) Cunningham, A. Introduction to Bioanalytical Sensors; John Wiley & Sons: 1998.
    (17) (a) Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Science 1995, 267, 1629–1632. (b) Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735–743. (c) A. Doron, A.; Katz, E.; Willner, I. Langmuir, 1995, 11, 1313–1317. (d) Lahav, M.; Gabai, R.; Shipway, A. N.; Willner, I. Chem. Commun., 1999, 1937–1938.
    (18) Grabar, K. C.; Allison, K. J.; Baker, B. E.; Bright, R. M.; Brown, K. R.; Freeman, R. G.; Fox, A. P.; Keating, C. D.; Musick, M. D.; Natan, M. J. Langmuir 1996, 12, 2353–2361.
    (19) Schmitt, J.; Mächtle, P.; Eck, D.; Möhwald, H.; Helm, C. A. Langmuir 1999, 15, 3256–3266.
    (20) Chen, C. F.; Tzeng, S. D.; Lin, M. H.; Gwo, S. Langmuir 2006, 22, 7819–7824, and references therein.
    (21) Martin, S. J.; Frye, G. C.; Senturia, S. D. Anal. Chem. 1994, 66, 2201–2219
    (22) Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J. J. Am. Chem. Soc. 1996, 118, 1148–1153.
    (23) Caruso, F.; Furlong, D. N.; Niikura, K.; Okahata, Y. Colloids and Surface B : Biointerface 1998, 10, 199–204.
    (24) Bizet, K.; Gabrielli, C.; Perrot, H. Analusis 1999, 27, 609–616.
    (25) Lazcka, O.; Campob, F. J. D.; Muñoz, F. X. Biosens. Bioelectron. 2007, 22, 1205–1217
    (26) Josse, F.; Dahint, R.; Schumacher, J.; Grunze, M.; Andle, J. C.; Vetelino, J. F. Sens Actuators A 1996, 53, 243–248.
    (27) Francis, L.; Friedt,J. -M.; De Palma, R.; Zhou, C.; Bartic, C.; Campitelli, A.; Bertrand, P. IEEE International Ultrasonics Conference 2004, 241–249.
    (28) Du, J.; Harding, G. L.; Ogilvy, J. A.; Dencher, P. R.; Lake, M. Sens Actuators A 1996, 56, 211–219.
    (29) Martin, S. J.; Ricco, A. J.; Niemczyk, T. M.; Frye, G. C. Sens Actuators A 1989, 20, 253–258.
    (30) Harding, G. L. Sens Actuators A 2001, 88, 20–28.

    Chapter 5
    (1) Shipway, A. N.; Katz, E.; Willner, I. ChemPhysChem. 2000, 1, 18–52.
    (2) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293–346.
    (3) Penn, S. G.; He, L.; Natan, M. J. Curr. Opin. Chem. Biol. 2003, 7, 609–615.
    (4) Katz, E.; Willner, I. Angew. Chem. Int. Ed. 2004, 43, 6042–6108.
    (5) Zhou, X. C.; O’Shea, S. J.; Li, S. F. Y. Chem. Commun. 2000, 953–954.
    (6) (a) Patolsky, F.; Ranjit, K. T.; Lichtenstein, A.; Willner, I. Chem. Commun. 2000, 1025–1026. (b) Weizmann, Y.; Patolsky, F.; Willner, I. Analyst 2001, 126, 1502–1504. (c) Willner, I.; Patolsky, F.; Weizmann, Y.; Willner, B. Talanta 2002, 56, 847–856.
    (7) (a) Lin, L.; Zhao, H. Q.; Li, J. R.; Tang, J. A. ; Duan, M. X. ; Jiang, L. Biochem. Biophys. Res. Commun. 2000, 274, 817–820. (b) Zhao, H. Q.; Lin, L.; Li, J. R.; Tang, J. A.; Duan, M. X.; Jiang, L. J. Nanopart. Res. 2001, 3, 321–323. (c) Liu, T.; Tang, J.; Zhao, H.; Deng, Y.; Jiang, L. Langmuir 2002, 18, 5624–5626. (d) Liu, T.; Tang, J.; Jiang, L. Biochem. Biophys. Res. Commun. 2004, 313, 3–7.
    (8) Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications ; Academic Press Inc.: San Diego, CA, 1997.
    (9) Lewis, M. Proceedings of IEEE Ultrasonics Symposium, 1977, 744–752.
    (10) Auld, B. A. Acoustic Fields in Solids; Malabar: R. E. Krieger 2nd edn., Vol. I, 1990
    (11) Campbell, C. K. Surface acoustic wave devices for mobile and wireless communications; Academic Press Inc.: San Diego, CA, 1998.
    (12) Curtin, S.; Jakoby, B.; Berthold, A.; Varadan, V. K.; Varadan, V. V., Vellekoop, M. J. Proceedings of Smart Electronics and MEMS (SPIE), San Diego, CA, 1998, 194–200.
    (13) Thompson, D. F.; Auld, B. A. Proceedings of the IEEE Ultrasonics Symposium, 1986, 261–266.
    (14) Baer, R. L.; Flory, C. A.; Tom-Moy, M.; Solomon, D. S. Proceedings of the IEEE Ultrasonics Symposium, 1992, 293–298.
    (15) Jakoby, B.; Vellekoop, M. J. Smart Mater. Struct. 1997, 6, 668–679.
    (16) Johnson, G.; Foise, J. Encycl. Appl. Phys. 1996, 15, 365–375.
    (17) Nakamura, K.; Kazumi, M.; Shimizu, H. Proceedings of the IEEE Ultrasonics Symposium 1977, 819–822.
    (18) Sze, S.M. (ed.) VLSI Technology, 2nd edn., Singapore: McGraw-Hill, 1988.
    (19) Kovacs, G.; Vellekoop, M. J.; Haueis, R.; Lubking, G.W.; Venema, A. Sens. Actuators A 1994, 43, 38–43.
    (20) Herrmann, F.; Weihnacht, M.; Büttgenbach, S. Ultrasonics 1999, 37, 335–341.
    (21) Jakoby, B.; Vellekoop, M. J. IEEE Trans. Ultrasonics Ferroelec. Freq. Control 2000, 47, 696–700.
    (22) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607–609.
    (23) Demer, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A. III; Letsinger, R. L.; Elghanian, R.; Viswanadham, G. Anal. Chem. 2000, 72, 5535–5541.

    Chapter 6
    (1) Stutzmann, M.; Garrido, J. A.; Eickhoff, M.; Brandt, M. S. Phys. Stat. Sol. A 2006, 203, 3424–3437.
    (2) Chaniotakis N.; Sofikiti, N. Anal. Chim. Acta 2008, 615, 1–9.
    (3) Bgoldr, B.; Steinhoff, G.; Hernando, J.; Purrucker, O.; Tanaka, M.; Nickel, B.; Stutzmann, M.; Eickhoff, M. Appl. Phys. Lett. 2005, 87, 263901.
    (4) Chen, C. -F.; Wu, C. -L.; Gwo, S. Appl. Phys. Lett. 2006, 89, 252109.
    (5) Petoral, J. R. M.; Jr.; Yazdi, G. R.; Spetz, A. L.; Yakimova, R.; Uvdal, K. Appl. Phys. Lett. 2007, 90, 223904.
    (6) Steinhoff, G.; Purrucker, O.; Tanaka, M.; Stutzmann, M.; Eickhoff, M. Adv. Funct. Mater. 2003, 13, 841–846.
    (7) Kang, B. S.; Ren, F.; Wang, L.; Lofton, C.; Tan, W. W.; Pearton, S. J.; Dabiran, A.; Osinsky, A.; Chow, P. P. Appl. Phys. Lett. 2005, 87, 023508.
    (8) Kang, B. S.; Pearton, S. J.; Chen, J. J.; Ren, F.; Johnson, J. W.; Therrien, R. J.; Rajagopal, P. J.; Roberts, C.; Piner, E. L.; Linthicum, K. J. Appl. Phys. Lett. 2006, 89, 122102.
    (9) Bgoldr, B.; Howgate, J.; von Ribbeck, H. -G.; Gawlina, Y.; Bandalo, V.; Steinhoff, G.; Stutzmann, M.; Eickhoff, M. Appl. Phys. Lett. 2006, 89, 183901.
    (10) Chiu, C. S.; Gwo, S. Anal. Chem. 2008, 80, 3318–3326.
    (11) Takagi, Y.; Santos, P. V.; Wiebicke, E.; Brandt, O.; Schönherr, H. -P.; Ploog, K. H. Appl. Phys. Lett. 2002, 81, 2538–2540.
    (12) Caliendo, C.; Imperatori, P. Appl. Phys. Lett. 2003, 83, 1641–1643.
    (13) Xu, J.; Thakur, J. S.; Zhong, F.; Ying, H.; Goldner, G. W. J. Appl. Phys. 2004, 96, 212.
    (14) Campbell, C. K. Surface acoustic wave devices for mobile and wireless communications; Academic Press Inc.: San Diego, CA, 1998.
    (15) Ballantine, D. S.; White, R. M.; Martin, S. J.; Ricco, A. J.; Zellers, E. T.; Frye, G. C.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications ; Academic Press Inc.: San Diego, CA, 1997.
    (16) Drafts, B. IEEE Trans. Microwave Theory and Techniques 2001, 49, 795–802.
    (17) Schmidt, F.; Scholl, G. Int. J. High Speed Electron. Syst. 2000, 10, 1143–1191.
    (18) Bulst, W. -E.; Fischergolder, G.; Reindl, L. IEEE Trans. Industrial Electronics 2001, 48, 265–271.
    (19) Caliendo, C.; Imperatori, P.; Cianci, E. Thin Solid Films 2003, 441, 32–37.
    (20) Ambacher, O. J. Phys. D: Appl. Phys. 1998, 31, 2653–2710.
    (21) Palacios, T.; Calle, F.; Monroy, E.; Muñoz, E. J. Vac. Sci. Technol. B 2002, 20, 2071–2074.
    (22) Wu, C. -L.; Wang, J. -C.; Chan, M. -H.; Chen, T. T.; Gwo, S. Appl. Phys. Lett. 2003, 83, 4530–4532.
    (23) Clement, M.; Vergara, L.; Sangrador, J.; Iborra, E.; Sanz-Hervás, A. Ultrasonics 2004, 42, 403–407.
    (24) Ingrosso, I.; Petroni, S.; Altamura, D.; De Vittorio, M.; Combi, C.; Passaseo, A. Microelectron. Eng. 2007, 84, 1320–1324.
    (25) Rimeika, R.; Ciplys, D.; Shur, M. S.; Gaska, R.; Khan, M. A.; Yang, J. phys. stat. sol. (B) 2002, 234, 897–900.
    (26) Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607–609.
    (27) Deger, C.; Born, E.; Angerer, H.; Ambacher, O.; Stutzmann, M.; Hornsteiner, J.; Riha, E.; Fischerauer, G. Appl. Phys. Lett. 1998, 72, 2400–2402.
    (28) Pedrósa, J.; Calle, F.; Grajal, J.; Jiménez Riobóo, R.J.; Prieto, C.; Pau, J. L.; Pereiro, J.; Hermann, M.; Eickhoff, M.; Bougrioua, Z. Superlattices and Microstructures 2004, 36, 815–823.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE