簡易檢索 / 詳目顯示

研究生: 張金鈴
Jin-Ling Chang
論文名稱: 膠達納黴素於9L大鼠腦瘤細胞中誘發葡萄糖調控蛋白94之表現-透過內質網逆境反應轉錄元件及轉錄因子ATF6來促進葡萄糖調控蛋白94之表現
Transactivation of GRP94 by ER stress induced by GA in 9L rat brain tumor cells - Activation of the grp94 promoter mainly through ERSEs by transcription factor ATF6
指導教授: 黎耀基
Dr. Yiu-Kay Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 41
中文關鍵詞: 葡萄糖調控蛋白94內質網逆境膠達納黴素轉錄調控
外文關鍵詞: GRP94, ER stress, ERSE, ATF6, geldanamycin
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膠達納黴素(Geldanamycin, GA)是熱休克蛋90(heat shock protein 90, HSP90)及葡萄糖調控蛋白94(glucose regulated protein94, GRP94)的抑制物且可能成為有效的抗癌藥物。過去我們實驗室發現以未達致死藥量的GA處理9L大鼠腦瘤細胞(rat brain tumor, RBT)會引發內質網逆境反應,導致未摺疊蛋白質反應(unfolded protein response, UPR)而誘發葡萄糖調控蛋白的大量表現。這些葡萄糖調控蛋白是在基因轉錄的層次受到調控,在葡萄糖調控蛋白的啟動子序列上存在有數個內質網逆境反應轉錄元件(ER stress response element, ERSE),具有CCAATN9 CCACG序列高度保留性,其中N9是指含CG為主的9個鹼基,此轉錄元件在內質網逆境誘發葡萄糖調控蛋白的調控中扮演必要且是決定性的角色。
    在此論文中我們以9L大鼠腦瘤細胞為材料,探討GA誘發9L大鼠腦瘤細胞中葡萄糖調控蛋白94表現所參與的訊息傳遞路徑。葡萄糖調控蛋白94是存在於內質網的伴護蛋白,我們發現GA引起的內質網逆境會在基因層次調控葡萄糖調控蛋白94而活化其大量表現。我們分析葡萄糖調控蛋白94的啟動子序列並針對轉錄元件設計不同長度片段的啟動子,轉殖進入報導基因載體中並進行分析,發現內質網逆境反應轉錄元件4及CRE-BP1/c-Jun 扮演重要的角色。此外,點突變及電泳遷移實驗也支持此一結果並指出其他的ERSE亦參與其中。在預處理抑制劑的實驗中,我們發現絲胺酸激酶抑制劑4-(2-氨乙基)苯磺酰氟( AEBSF)會抑制活化轉錄因子(activating transcription factor 6, ATF6)被酶切而抑制葡萄糖調控蛋白94被活化。總結而言,我們發現在GA所引起的內質網逆境中,葡萄糖調控蛋白94的活化主要是透過內質網逆境反應轉錄元件及活化轉錄因子6的參與。


    Geldanamycin (GA), a benzoquinone ansamycin, is an inhibitor of heat shock protein 90 (HSP90)/ glucose-regulated protein 94 (GRP94) and has been implicated as a potent anti-cancer drug. In our previous study, we found that GA with sublethal dose provoked the ER stress in 9L rat brain tumor (RBT) cells and induced glucose-regulated proteins under unfold protein response (UPR) at transcriptional level. The promoter of grp genes contain multiple copies of the ER stress response element (ERSE), with a consensus of CCAAT(N9)CCACG, which is critical and necessary for transcription induction. Herein, we showed that GRP94, an ER resident chaperone, was induced under GA treatment in 9L rat brain tumor (RBT) cells and the mRNA level of grp94 was peaked at 8 h for about 9 fold. We analyzed the promoter sequence of grp94 according to rat genome resource and designed reporter vectors containing progressive-deleted promoters of grp94. In reporter gene assays, ERSE4 and CRE-BP1/c-Jun played the major roles in GA-induced grp94 expression. Moreover, with mutagenesis clones we further confirmed this result although other ERSEs still have involved in. By inhibitors screening, pretreatment of KT5720, BIM I, or Gö6983 partially decreased GA-induced GRP94 expression, suggesting the involvement of PKA and PKC. Pretreatment of AEBSF blocked proteolysis of ATF6 abolished GA-induced GRP94 expression. Taken together, we found that under GA induced ER stress in 9L cells, activation of GRP94 were mainly through ERSEs by the transcription factor ATF6.

    中文摘要 …………………………………………………………… 1 ABSTRACT …………………………………………………………… 2 ABBREVIATIONS …………………………………………………… 3 INTRODUCTION ……………………………………………………… 5 EXPERIMENTAL PROCEDURES ……………………………………… 9 RESULTS …………………………………………………………… 14 DISCUSSION ……………………………………………………… 19 REFERENCES ……………………………………………………… 23 FIGURE LEGENDS ………………………………………………… 29 FIGURES …………………………………………………………… 32 TABLES …………………………………………………………… 40

    REFERENCE
    Anderson RL, Naylor DJ, Gabriele T, Tetaz T, Hoj PB (1994): Characterization of novel hsp70 in mammalian cells. Int J Hyperthermia 10:419-28.
    Argon Y, Simen BB (1999): GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol 10:495-505.
    Chang YS, Lee LC, Sun FC, Chao CC, Fu HW, Lai YK (2006): Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J Cell Biochem 97:156-65.
    Chen KD, Chen LY, Huang HL, Lieu CH, Chang YN, Chang MD, Lai YK (1998): Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9L rat brain tumor cells. J Biol Chem 273:749-55.
    Chen KD, Hung JJ, Huang HL, Chang MD, Lai YK (1997): Rapid induction of the Grp78 gene by cooperative actions of okadaic acid and heat-shock in 9L rat brain tumor cells--involvement of a cAMP responsive element-like promoter sequence and a protein kinase A signaling pathway. Eur J Biochem 248:120-9.
    Chen X, Shen J, Prywes R (2002): The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277:13045-52.
    Di Sano F, Ferraro E, Tufi R, Achsel T, Piacentini M, Cecconi F (2006): Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281:2693-700.
    Fujita E, Kouroku Y, Jimbo A, Isoai A, Maruyama K, Momoi T (2002): Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ 9:1108-14.
    Haze K, Okada T, Yoshida H, Yanagi H, Yura T, Negishi M, Mori K (2001): Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response. Biochem J 355:19-28.
    Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999): Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10:3787-99.
    Hong M, Lin MY, Huang JM, Baumeister P, Hakre S, Roy AL, Lee AS (2005): Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: role of TFII-I and its tyrosine phosphorylation. J Biol Chem 280:16821-8.
    Ito M, Onuki R, Bando Y, Tohyama M, Sugiyama Y (2007): Phosphorylated PKR contributes the induction of GRP94 under ER stress. Biochem Biophys Res Commun 360:615-20.
    Kaneko M, Niinuma Y, Nomura Y (2003): Activation signal of nuclear factor-kappa Bin response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull 26:931-5.
    Kaufman RJ (1999): Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211-33.
    Kuang E, Wan Q, Li X, Xu H, Liu Q, Qi Y (2005): ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP). J Cell Physiol 204:549-59.
    Lai MT, Huang KL, Chang WM, Lai YK (2003): Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 15:585-95.
    Lawson B, Brewer JW, Hendershot LM (1998): Geldanamycin, an hsp90/ GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174:170-8.
    Lee AS (2001): The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504-10.
    Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S, Lee AS (2000): ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 20:5096-106.
    Li WW, Hsiung Y, Zhou Y, Roy B, Lee AS (1997): Induction of the mammalian GRP78/BiP gene by Ca2+ depletion and formation of aberrant proteins: activation of the conserved stress-inducible grp core promoter element by the human nuclear factor YY1. Mol Cell Biol 17:54-60.
    Livak KJ, Schmittgen TD (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-8.
    Luo S, Baumeister P, Yang S, Abcouwer SF, Lee AS (2003): Induction of Grp78/BiP by translational block: activation of the Grp78 promoter by ATF4 through and upstream ATF/CRE site independent of the endoplasmic reticulum stress elements. J Biol Chem 278:37375-85.
    Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002): An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287-94.
    Okada T, Haze K, Nadanaka S, Yoshida H, Seidah NG, Hirano Y, Sato R, Negishi M, Mori K (2003): A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6. J Biol Chem 278:31024-32.
    Pahl HL, Baeuerle PA (1995): A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. Embo J 14:2580-8.
    Parker R, Phan T, Baumeister P, Roy B, Cheriyath V, Roy AL, Lee AS (2001): Identification of TFII-I as the endoplasmic reticulum stress response element binding factor ERSF: its autoregulation by stress and interaction with ATF6. Mol Cell Biol 21:3220-33.
    Pearl LH, Prodromou C (2000): Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10:46-51.
    Ramsay RG, Ciznadija D, Mantamadiotis T, Anderson R, Pearson R (2005): Expression of stress response protein glucose regulated protein-78 mediated by c-Myb. Int J Biochem Cell Biol 37:1254-68.
    Reddy RK, Dubeau L, Kleiner H, Parr T, Nichols P, Ko B, Dong D, Ko H, Mao C, DiGiovanni J, Lee AS (2002): Cancer-inducible transgene expression by the Grp94 promoter: spontaneous activation in tumors of various origins and cancer-associated macrophages. Cancer Res 62:7207-12.
    Rosser MF, Nicchitta CV (2000): Ligand interactions in the adenosine nucleotide-binding domain of the Hsp90 chaperone, GRP94. I. Evidence for allosteric regulation of ligand binding. J Biol Chem 275:22798-805.
    Roy B, Lee AS (1999): The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Res 27:1437-43.
    Scheibel T, Buchner J (1998): The Hsp90 complex--a super-chaperone machine as a novel drug target. Biochem Pharmacol 56:675-82.
    Shen J, Prywes R (2005): ER stress signaling by regulated proteolysis of ATF6. Methods 35:382-9.
    Shu CW, Cheng NL, Chang WM, Tseng TL, Lai YK (2005): Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J Cell Biochem 94:1199-209.
    Shyu HY (2002): Involvement of calcium mediated reactive oxygen species in inductive GRP78 expression by geldanamycin in 9L rat brain tumor cells. master thesis of NTHU
    Welihinda AA, Tirasophon W, Kaufman RJ (1999): The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 7:293-300.
    Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL (2000): ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355-64.
    Yoshida H, Haze K, Yanagi H, Yura T, Mori K (1998): Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem 273:33741-9.
    Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2000): ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20:6755-67.
    Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K (2001): Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol Cell Biol 21:1239-48.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE