研究生: |
高立行 Kao, Li-Hsing |
---|---|
論文名稱: |
合成奈米氫氧化鎳於鎳鐵電池之研究與應用 Fabrication and applications of nano nickel hydroxide in Ni-Fe battery |
指導教授: |
周更生
Chou, Kan-Sen |
口試委員: |
蔡大翔
林春強 胡啟章 段興宇 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 鎳鐵電池 、α氫氧化鎳 、半固相法 、β氫氧化鈷 、振實密度 |
外文關鍵詞: | Ni-Fe battery, α-Nickel hydroxide, Semi-solid reaction, β-cobalt hydroxide, tap density |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要針對α氫氧化鎳的合成與應用進行探討,建構出以奈米α氫氧化鎳作為其他衍生的相關研究,如:奈米氫氧化鎳的合成方法開發、奈米氫氧化鎳的粉體振實密度改良、鎳電極助導劑—氫氧化鈷的合成與應用、奈米氫氧化鎳漿料的粒子行為探討。
奈米氫氧化鎳的合成方法研究,主要是以半固相法與配位沉澱法兩種自行開發的合成方法作探討與比較。半固相法不同於文獻報導的合成方法,特色是反應時間只需30分鐘,前驅物濃度近飽和,反應所需鹼為固相粉體,所需額外能量僅為前驅物溶解時的60 °C溫控,製備出的粒子為40–50 nm的針狀結構,0.5C放電測試電容量為290 mAh/g,將製程放大由XRD分析顯示其結構仍為α氫氧化鎳,粉體經氮氣吸脫附實驗其BET表面積為62 m2/g;配位沉澱法則使用氨水與鎳離子形成錯合物,進而控制粒子的結晶與成長,產物為結晶性較佳的球形粒子,尺寸為25–40 nm,0.5C放電測試電容量為300 mAh/g,粉體經氮氣吸脫附實驗其BET表面積為81 m2/g。此二種方法獲得的粉末,其振實密度皆為1.0–1.1 g/cm3,皆為介孔材料。
氫氧化鎳振實密度改良部分,主要是以前述兩種合成方法製備的α氫氧化鎳粉末,各以等電位法與冷凍解凍法進行粉體的聚集,以提升粉末振實密度,粉末經過聚集後的結晶性不變,振實密度則提升至1.3–1.4 g/cm3,且其單位質量下的電容量也提升至330 mAh/g,這不但證明聚集方法可改善粉體間的堆積密度,增加振實密度,更可能改進了粒子間的質子傳遞,使得電容量亦有所提升。值得一提的是,冷凍解凍法所聚集的粒子並不會經重新震盪而分散,此一特性也更有利於未來粉體造粒的應用。
奈米氫氧化鈷的部分,由於前述兩種合成方法製備的α氫氧化鎳皆為奈米材料,因此過往所用的微米級助導劑並不適合用於此,本部分主要以開發奈米級的助導劑β氫氧化鈷為主,依先前較簡單快速的半固相法製備β氫氧化鈷,其粒子亦為40–50 nm的針狀結構,結晶性良好,混合α氫氧化鎳進行5C電流放電,結果顯示其電容量為230 mAh/g,優於一般市售Co助導劑。
奈米氫氧化鎳漿料的粒子行為探討部分,主要以配位沉澱法合成的α氫氧化鎳粒子作為漿料來源,並調整溶液的酸鹼度與固含量進行粒徑分析,由粒徑分析的數據推得一線性方程式描述溶液中的聚集速率與酸鹼度及固含量關係,另外由乾燥後的漿料進行表面積與振實密度分析,發現聚集的粒子行為會影響粒子的結構與粒徑分布,如振實密度,而聚集的快慢又受溶液的酸鹼度與固含量影響,由此,再推得一線性方程式描述乾燥後的粉末(凝聚)振實密度與表面電荷(zeta potential)及固含量關係。
Nickel hydroxide is the positive electrode material of Ni-Cd, Ni-Fe, and Ni-MH secondary batteries. The hydroxides of Ni(II) are known to crystallize in two polymorphic modifications known as α and β. α-Nickel hydroxide have attracted considerable attention over the past decade because of its higher theoretical capacity and better cycling stability than β-nickel hydroxide. In this dissertation, we focus on the synthesis, characterization and application of α-nickel hydroxide in Ni-Fe battery.
In chapter 3, the novel semi-solid reaction method and the coordinate precipitation method are developed to synthesize α-nickel hydroxide nanoparticles, and the particles are characterized using several techniques to determine their particle size, morphology, phase stability, tap density, surface area, and electrochemical capacity. The tap density of the particles is around 1.0–1.1 g/cm3, and the capacity is about 290–300 mAh/g under 0.5C condition. The size and morphology of particles synthesized by the semi-solid reaction is 40–50 nm long, needle-like structure. The product from the coordinate precipitation is 25–40 nm in diameter and sphere in shape.
In chapter 4, α-nickel hydroxide particles are aggregated by two different methods, i.e. isoelectric point method and freeze/thaw method. The results show that the primary nano-particles of α-Ni(OH)2 forms micro-sized particles, the tap density of α-nickel hydroxide increases to 1.3–1.4 g/cm3 and the capacity increases to 330 mAh/g through both methods. The primary particles of α-nickel hydroxide form hard agglomerates through the freeze/thaw method and remain aggregated even after sonication.
In chapter 5, β-cobalt hydroxide is synthesized by the semi-solid reaction, and the product has 40–50 nm long, needle-like structure. The conducting agent, β-cobalt hydroxide, is added to α-nickel hydroxide paste to prepare the nickel electrode, and the capacity of α-nickel hydroxide is 230 mAh/g under 5C, which is better than commercially purchased cobalt oxide powder.
In chapter 6, the spherical nanoparticles obtained by the coordinate precipitation method are used to prepare slurries for dynamical particle sizing test to investigate its coagulation behavior. The effects of both solid content and solution pH are studied. Generally, particles aggregate more rapidly when the solid content is high and when the solution pH is near its isoelectric point. The stability ratio, defined as the ratio of the fast coagulation rate to the present coagulation rate, is a fuction of these two parameters. We then develop an empirical equation to correlate this ratio to the solid content of the suspension and zeta potential of particles. We also develop another empirical equation to correlate the tap density of coagulated particles to both the solid content of the suspension and zeta potential of particles.
1. Kabza, H. APPLICATIONS – TRANSPORTATION | Hybrid Electric Vehicles: Overview. Encycl. Electrochem. Power Sources 249–268 (2009). doi:10.1016/B978-044452745-5.00086-1
2. Singamsetti, N. & Tosunoglu, S. A Review of Rechargeable Battery Technologies. 6 (2012).
3. Shukla, A. K., Ravikumar, M. K. & Balasubramanian, T. S. Nickel/iron batteries. J. Power Sources 51, 29–36 (1994).
4. Balasubramanian, T. S. & Shukla, A. K. Effect of metal-sulfide additives on charge/discharge reactions of the alkaline iron electrode. J. Power Sources 41, 99–105 (1993).
5. Feduska, W. & Vaill, R. E. DESIGN OF A IRON-NICKEL BATTERY FOR ELECTRIC VEHICLES. in Journal of the Electrochemical Society 125, C339–C339 (ELECTROCHEMICAL SOC INC 10 SOUTH MAIN STREET, PENNINGTON, NJ 08534, 1978).
6. Smith, D. J. & Harsch, W. C. NICKEL-IRON BATTERY DEVELOPMENT FOR ELECTRIC VEHICLES. in Journal of the Electrochemical Society 125, C342–C342 (ELECTROCHEMICAL SOC INC 10 SOUTH MAIN STREET, PENNINGTON, NJ 08534, 1978).
7. Briner, E. & Yalda, A. Recherches théoriques et expérimentales sur le potentiel de l’électrode d'ozone. Helv. Chim. Acta 25, 1188–1202 (1942).
8. Chakkaravarthy, C., Periasamy, P., Jegannathan, S. & Vasu, K. I. The nickel/iron battery. J. Power Sources 35, 21–35 (1991).
9. Ravikumar, M. K., Balasubramanian, T. S. & Shukla, A. K. A nickel-iron battery with roll-compacted iron electrodes. J. Power Sources 56, 209–212 (1995).
10. Jugner, W. Verfahren zur Elektrolytischen Vergrösserung der Oberfläche von Masseträgern aus Eisen, Nickel oder Kobalt für Elektroden in alkalischen Sammlern. Ger. Pat. 163, 170 (1901).
11. Jugner, W. Elektrischen Sammlern mit unveränderlichem alkalischen Elektrolyten. Ger. Pat. 157, 290 (1901).
12. Faure, C., Delmas, C., Fouassier, M. & Willmann, P. Preparation and characterization of cobalt-substituted α-nickel hydroxides stable in KOH medium Part I. α′-hydroxide with an ordered packing. J. Power Sources 35, 249–261 (1991).
13. Faure, C., Delmas, C. & Willmann, P. Preparation and characterization of cobalt-substituted α-nickel hydroxide stable in KOH medium Part II. α-Hydroxide with a turbostratic structure. J. Power Sources 35, 263–277 (1991).
14. Kurmoo, M. et al. 3D Long-Range Magnetic Ordering in Layered Metal–Hydroxide Triangular Lattices 25 Å Apart. J. Solid State Chem. 145, 452–459 (1999).
15. Doyle, R. L., Godwin, I. J., Brandon, M. P. & Lyons, M. E. G. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Phys. Chem. Chem. Phys. 15, 13737 (2013).
16. Aia, M. A. HYDROTHERMAL STUDIES OF SYSTEM NIO-H2O. J. Electrochem. Soc. 113, 1045 (1966).
17. McEwen, R. S. Crystallographic studies on nickel hydroxide and the higher nickel oxides. J. Phys. Chem. 75, 1782–1789 (1971).
18. Flevet, F. & Flglarz, M. Preparation and study by electron microscopy of the development of texture with temperature of a porous exhydroxide nickel oxide. J. Catal. 39, 350–356 (1975).
19. Barnard, R., Randell, C. F. & Tye, F. L. in Power Sources 8, 401–423 (Academic Press London, 1981).
20. Greaves, C. & Thomas, M. A. Refinement of the structure of deuterated nickel hydroxide, Ni (OD) 2, by powder neutron diffraction and evidence for structural disorder in samples with high surface area. Acta Crystallogr. Sect. B Struct. Sci. 42, 51–55 (1986).
21. Lotmar, W. & Feitknecht, W. Über Änderungen der Ionenabstände in Hydroxyd-Schichtengittern. Zeitschrift für Krist. Mater. 93, 368–378 (1936).
22. MacArthur, D. M. The hydrated nickel hydroxide electrode potential sweep experiments. J. Electrochem. Soc. 117, 422–426 (1970).
23. Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin film nickel oxide electrodes. J. Electrochem. Soc. 134, 377–384 (1987).
24. Bode, H. Chemische Vorgänge auf Elektroden von galvanischen Stromquellen. Angew. Chemie 73, 553–560 (1961).
25. Le Bihan, S., Guenot, J. & Figlarz, M. Sur la cristallogénèse de l’hydroxyde de nickel Ni (OH) 2. CR l’Académie des Sci. Paris 270, 2131–2133 (1970).
26. Le Bihan, S. & Figlarz, M. Croissance de l’hydroxyde de nickel Ni(OH)2 à partir d'un hydroxyde de nickel turbostratique. J. Cryst. Growth 13-14, 458–461 (1972).
27. Figlarz, M. & LEBIHAN, S. INFRARED SPECTROSCOPIC STUDY OF A TURBOSTATIC NICKEL HYDROXIDE AND ITS CRYSTALLIZATION. COMPTES RENDUS Hebd. DES SEANCES L Acad. DES Sci. Ser. C 272, 580 (1971).
28. Mani, B. & de Neufville, J. P. Dehydration of chemically and electrochemically impregnated (CI and EI) nickel hydroxide electrodes. J. Electrochem. Soc. 135, 800–803 (1988).
29. Genin, P., Delahayevidal, A., Portemer, F., Tekaiaelhsissen, K. & Figlarz, M. Preparation and characterization of alpha-type nickel hydroxides obtained by chemical precipitation-study of the anionic species. Eur. J. Solid State Inorg. Chem. 28, 505–518 (1991).
30. Delahaye-Vidal, A. et al. Structural and textural investigations of the nickel hydroxide electrode. Solid State Ionics 84, 239–248 (1996).
31. Cordoba‐Torresi, S. I., Gabrielli, C., Hugot‐Le Goff, A. & Torresi, R. Electrochromic behavior of nickel oxide electrodes I. Identification of the colored state using quartz crystal microbalance. J. Electrochem. Soc. 138, 1548–1553 (1991).
32. Portemer, F., Delahaye‐Vidal, A. & Figlarz, M. Characterization of active material deposited at the nickel hydroxide electrode by electrochemical impregnation. J. Electrochem. Soc. 139, 671–678 (1992).
33. Faure, C., Delmas, C. & Fouassier, M. Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO 4 solution. J. Power Sources 35, 279–290 (1991).
34. Bernard, M. C., Bernard, P., Keddam, M., Senyarich, S. & Takenouti, H. Characterisation of new nickel hydroxides during the transformation of α Ni (OH) 2 to β Ni (OH) 2 by ageing. Electrochim. Acta 41, 91–93 (1996).
35. Bode, H., Dehmelt, K. & Witte, J. Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat. Electrochim. Acta 11, 1079–IN1 (1966).
36. Mackenzie, J. D. The viscosity, molar volume and electric conductivity of liquid boron trioxide. Trans. Faraday Soc. 52, 1564–1568 (1956).
37. Folk, S. U. Investigations on the Reaction Mechanism of the Nickel‐Cadmium Cell. J. Electrochem. Soc. 107, 661–667 (1960).
38. Glemser, O. & Einerhand, J. �ber h�here Nickelhydroxyde. Zeitschrift f�r Anorg. Chemie 261, 26–42 (1950).
39. Melendres, C. A., Paden, W., Tani, B. & Walczak, W. On the structure of the higher oxide forms of nickel. J. Electrochem. Soc.;(United States) 134, (1987).
40. Pandya, K. I., Hoffman, R. W., McBreen, J. & O’Grady, W. E. In Situ X‐Ray Absorption Spectroscopic Studies of Nickel Oxide Electrodes. J. Electrochem. Soc. 137, 383–388 (1990).
41. McBreen, J. et al. In situ time-resolved x-ray absorption near edge structure study of the nickel oxide electrode. J. Phys. Chem. 93, 6308–6311 (1989).
42. Kober, F. P. Analysis of the Charge‐Discharge Characteristics of Nickel‐Oxide Electrodes by Infrared Spectroscopy. J. Electrochem. Soc. 112, 1064–1067 (1965).
43. Kober, F. P. Infrared spectroscopic investigation of charged nickel hydroxide electrodes. J. Electrochem. Soc. 114, 215–218 (1967).
44. Jackovitz, J. F. The vibrational spectra of nickel hydroxide and higher nickel oxide. in Proc. of Symposium on the Nickel Electrode 82, 4 (1982).
45. Oshitani, M., Yufu, H., Takashima, K., Tsuji, S. & Matsumaru, Y. Development of a pasted nickel electrode with high active material utilization. J. Electrochem. Soc. 136, 1590–1593 (1989).
46. Harivel, J. P., Morignat, B., Labat, J. & Laurent, J. F. in Power Sources 1966 239–268 (Pergamon Press Oxford, 1967).
47. Lim, H. S., Verzwyvelt, S. A. & Clement, S. K. The effect of different alkali metal hydroxides on nickel electrode life. in IECEC’87; Proceedings of the Twenty-second Intersociety Energy Conversion Engineering Conference, Volume 2 2, 457–463 (1988).
48. Greaves, C. MA’Thomas and M. Turner. Power Sources 9, 163 (1983).
49. Rives, V. Layered double hydroxides: present and future. (Nova Publishers, 2001).
50. Rives, V. & Angeles Ulibarri, M. Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coord. Chem. Rev. 181, 61–120 (1999).
51. Allmann, R. Doppelschichtstrukturen mit brucitaehnlichen Schichtionen [Me (II) 1-xMe (III) x (OH) 2] x+. Chimia (Aarau). 24, 99–108 (1970).
52. Delmas, C., Faure, C., Gautier, L., Guerlou-Demourgues, L. & Rougier, A. The nickel hydroxide electrode from the solid-state chemistry point of view. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 354, 1545–1554 (1996).
53. Axmann, P. & Glemser, O. Nickel hydroxide as a matrix for unusual valencies: the electrochemical behaviour of metal (III)-ion-substituted nickel hydroxides of the pyroaurite type. J. Alloys Compd. 246, 232–241 (1997).
54. Demourgues‐Guerlou, L. & Delmas, C. Effect of iron on the electrochemical properties of the nickel hydroxide electrode. J. Electrochem. Soc. 141, 713–717 (1994).
55. Delmas, C., Faure, C. & Borthomieu, Y. The effect of cobalt on the chemical and electrochemical behaviour of the nickel hydroxide electrode. Mater. Sci. Eng. B 13, 89–96 (1992).
56. Guerlou‐Demourgues, L. & Delmas, C. Electrochemical Behavior of the Manganese‐Substituted Nickel Hydroxides. J. Electrochem. Soc. 143, 561–566 (1996).
57. Glemser, O., Buss, D. H. & Bauer, J. Method for producing a double hydroxide active material. (1988).
58. Ehlsissen, K. T., Delahaye-Vidal, A., Genin, P., Figlarz, M. & Willmann, P. Preparation and characterization of turbostratic Ni/Al layered double hydroxides for nickel hydroxide electrode applications. J. Mater. Chem. 3, 883 (1993).
59. L.Indira, M.Dixit, P. V. kamat. Electrosynthesis of layered double hydroxides trivalent cations. J. Power Sources. 52, 93–97 (1994).
60. Li, Y. W. et al. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. Int. J. Hydrogen Energy 35, 2539–2545 (2010).
61. Zhao, Y. Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea. Int. J. Hydrogen Energy 29, 889–896 (2004).
62. Yang, L. J., Gao, X. P., Wu, Q. D., Zhu, H. Y. & Pan, G. L. Phase distribution and electrochemical properties of Al-substituted nickel hydroxides. J. Phys. Chem. C 111, 4614–4619 (2007).
63. Wang, C. Y., Zhong, S., Konstantinov, K., Walter, G. & Liu, H. K. Structural study of Al-substituted nickel hydroxide. Solid State Ionics 148, 503–508 (2002).
64. Zhao, Y. L. et al. Different additives-substituted α-nickel hydroxide prepared by urea decomposition. Electrochim. Acta 50, 91–98 (2004).
65. Mavis, B. & Akinc, M. Three-component layer double hydroxides by urea precipitation: structural stability and electrochemistry. J. Power Sources 134, 308–317 (2004).
66. Demourgues-Guerlou, L. & Delmas, C. Structure and properties of precipitated nickel-iron hydroxides. J. Power Sources 45, 281–289 (1993).
67. Qiu, J. & Villemure, G. Anionic clay modified electrodes: electron transfer mediated by electroactive nickel, cobalt or manganese sites in layered double hydroxide films. J. Electroanal. Chem. 428, 165–172 (1997).
68. Jayashree, R. S. & Vishnu Kamath, P. Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells. J. Power Sources 107, 120–124 (2002).
69. Morishita, M. et al. Structural Analysis by Synchrotron XRD and XAFS for Manganese-Substituted α-and β-Type Nickel Hydroxide Electrode. J. Electrochem. Soc. 155, A936–A944 (2008).
70. Tang, C., Li, G. & Li, L. Fabrication of Nickel Nitrate Hydroxide Microsphere with Inheriting Morphology to. BETA.-Ni (OH) 2 and NiO. Chem. Lett. 37, 1138–1139 (2008).
71. van Bommel, A. & Dahn, J. R. Synthesis of Spherical and Dense Particles of the Pure Hydroxide Phase Ni1∕ 3Mn1∕ 3Co1∕ 3 (OH) 2. J. Electrochem. Soc. 156, A362–A365 (2009).
72. Luo, Y., Li, G., Duan, G. & Zhang, L. One-step synthesis of spherical α-Ni (OH) 2 nanoarchitectures. Nanotechnology 17, 4278 (2006).
73. Al-Hajry, A. et al. Low-temperature growth and properties of flower-shaped β-Ni (OH) 2 and NiO structures composed of thin nanosheets networks. Superlattices Microstruct. 44, 216–222 (2008).
74. Zhang, D. E. et al. Synthesis of needle-like nickel nanoparticles in water-in-oil microemulsion. Mater. Lett. 59, 2011–2014 (2005).
75. Watanabe, K., Koseki, M. & Kumagai, N. Effect of cobalt addition to nickel hydroxide as a positive material for rechargeable alkaline batteries. J. Power Sources 58, 23–28 (1996).
76. Reisner, D. E., Salkind, A. J., Strutt, P. R. & Xiao, T. D. Nickel hydroxide and other nanophase cathode materials for rechargeable batteries. J. Power Sources 65, 231–233 (1997).
77. He, X., Li, J., Cheng, H., Jiang, C. & Wan, C. Controlled crystallization and granulation of nano-scale β-Ni (OH) 2 cathode materials for high power Ni-MH batteries. J. Power Sources 152, 285–290 (2005).
78. Luo, Y., Duan, G. & Li, G. Synthesis and characterization of flower-like β-Ni (OH) 2 nanoarchitectures. J. Solid State Chem. 180, 2149–2153 (2007).
79. Song, Q. S., Chiu, C. H. & Chan, S. L. I. Performance improvement of pasted nickel electrodes with an addition of ball-milled nickel hydroxide powder. Electrochim. Acta 51, 6548–6555 (2006).
80. PICKETT, D. F. USE OF ETHANOL SOLUTIONS FOR ELECTROCHEMICAL IMPREGNATION OF POROUS STRUCTURES WITH NICKEL-HYDROXIDE. in JOURNAL OF THE ELECTROCHEMICAL SOCIETY 120, C228–C228 (ELECTROCHEMICAL SOC INC 10 SOUTH MAIN STREET, PENNINGTON, NJ 08534, 1973).
81. Pickett, D. F. ANALYSIS OF ETHANOLIC METAL NITRATE SOLUTIONS USED IN FABRICATION OF NICKEL-HYDROXIDE ELECTRODES. in JOURNAL OF THE ELECTROCHEMICAL SOCIETY 122, C112–C112 (ELECTROCHEMICAL SOC INC 10 SOUTH MAIN STREET, PENNINGTON, NJ 08534, 1975).
82. Salavati-Niasari, M. & Entesari, M. Controlled synthesis of spherical α-Ni (OH) 2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO. Polyhedron 33, 302–309 (2012).
83. Chen, Y.-C. et al. One-pot synthesis of Ag/β-Ni (OH) 2 flower microspheres with enhanced photocatalytic performance. Colloids Surfaces A Physicochem. Eng. Asp. 395, 125–130 (2012).
84. Cao, M., He, X., Chen, J. & Hu, C. Self-assembled nickel hydroxide three-dimensional nanostructures: a nanomaterial for alkaline rechargeable batteries. Cryst. Growth Des. 7, 170–174 (2007).
85. Hu, B. et al. Controllable synthesis of zinc-substituted alpha- and beta-nickel hydroxide nanostructures and their collective intrinsic properties. Chemistry 14, 8928–38 (2008).
86. Chen, H. et al. The structure and electrochemical performance of spherical Al-substituted α-Ni (OH) 2 for alkaline rechargeable batteries. J. Power Sources 143, 243–255 (2005).
87. Ren, J., Zhou, Z., Gao, X. P. & Yan, J. Preparation of porous spherical α-Ni (OH) 2 and enhancement of high-temperature electrochemical performances through yttrium addition. Electrochim. Acta 52, 1120–1126 (2006).
88. Liu, B.-H., Yu, S.-H., Chen, S.-F. & Wu, C.-Y. Hexamethylenetetramine directed synthesis and properties of a new family of α-nickel hydroxide organic-inorganic hybrid materials with high chemical stability. J. Phys. Chem. B 110, 4039–4046 (2006).
89. Shangguan, E., Chang, Z., Tang, H., Yuan, X.-Z. & Wang, H. Synthesis and characterization of high-density non-spherical Ni (OH) 2 cathode material for Ni–MH batteries. Int. J. Hydrogen Energy 35, 9716–9724 (2010).
90. Shangguan, E., Chang, Z., Tang, H., Yuan, X.-Z. & Wang, H. Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni–metal hydride batteries. J. Power Sources 196, 7797–7805 (2011).
91. Zhang, Z. J., Zhu, Y. J., Bao, J., Lin, X. R. & Zheng, H. Z. Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method. J. Alloys Compd. 509, 7034–7037 (2011).
92. Wang, Y. et al. Spherical clusters of β-Ni(OH)2 nanosheets supported on nickel foam for nickel metal hydride battery. Electrochim. Acta 56, 8285–8290 (2011).
93. Kim, Y. & Kim, D. Synthesis of High-Density Nickel Cobalt Aluminum Hydroxide by Continuous Coprecipitation Method. ACS Appl. Mater. Interfaces 4, 586–589 (2012).
94. Liu, C., Wu, H. & Li, Y. Structure and electrochemical performance of Y (III) and Al (III) codoped amorphous nickel hydroxide. J. Phys. Chem. Solids 70, 723–726 (2009).
95. Hu, W. & Noréus, D. Alpha nickel hydroxides as lightweight nickel electrode materials for alkaline rechargeable cells. Chem. Mater. 974–978 (2003). doi:10.1021/cm021312z
96. Peng, M. & Shen, X. Template growth mechanism of spherical Ni (OH) 2. J. Cent. South Univ. Technol. 14, 310–314 (2007).
97. Yue, X., Pan, J., Sun, Y. & Wang, Z. Synthesis and Electrochemical Properties of Nano–Micro Spherical β-Ni (OH) 2 with Super High Charge–Discharge Speed. Ind. Eng. Chem. Res. 51, 8358–8365 (2012).
98. Mi, X. et al. High temperature performances of yttrium-doped spherical nickel hydroxide. Electrochim. Acta 49, 3361–3366 (2004).
99. Zhang, W. et al. Effect of nickel hydroxide composition on the electrochemical performance of spherical Ni (OH) 2 positive materials for Ni–MH batteries. Int. J. Hydrogen Energy 34, 473–480 (2009).
100. Zhu, Z. et al. PEG-directed microwave-assisted hydrothermal synthesis of spherical α-Ni (OH) 2 and NiO architectures. Ceram. Int. 39, 2567–2573 (2013).
101. Li, L., Xu, S., Ju, Z. & Wu, F. Recovery of Ni, Co and rare earths from spent Ni–metal hydride batteries and preparation of spherical Ni (OH) 2. Hydrometallurgy 100, 41–46 (2009).
102. Hu, C.-C., Wu, Y.-T. & Chang, K.-H. Low-Temperature Hydrothermal Synthesis of Mn 3 O 4 and MnOOH Single Crystals: Determinant Influence of Oxidants. Chem. Mater. 20, 2890–2894 (2008).
103. Jiang, J. & Kucernak, A. Electrochemical supercapacitor material based on manganese oxide: preparation and characterization. Electrochim. Acta 47, 2381–2386 (2002).
104. Ganesh Kumar, V., Munichandraiah, N., Vishnu Kamath, P. & Shukla, A. K. On the performance of stabilized α-nickel hydroxide as a nickel-positive electrode in alkaline storage batteries. J. Power Sources 56, 111–114 (1995).
105. Ramesh, T. N. & Kamath, P. V. Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. J. Power Sources 156, 655–661 (2006).
106. Hu, W.-K., Gao, X.-P., Noréus, D., Burchardt, T. & Nakstad, N. K. Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells. J. Power Sources 160, 704–710 (2006).
107. Kiani, M. A., Mousavi, M. F. & Ghasemi, S. Size effect investigation on battery performance: Comparison between micro- and nano-particles of ??-Ni(OH)2 as nickel battery cathode material. J. Power Sources 195, 5794–5800 (2010).
108. Gao, X.-P. & Yang, H.-X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci. 3, 174–189 (2010).
109. Shukla, a. K., Venugopalan, S. & Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001).
110. Dai, J., Li, S. F. Y., Xiao, T. D., Wang, D. M. & Reisner, D. E. Structural stability of aluminum stabilized alpha nickel hydroxide as a positive electrode material for alkaline secondary batteries. J. Power Sources 89, 40–45 (2000).
111. Kamath, P. V. et al. Stabilized α‐Ni (OH) 2 as Electrode Material for Alkaline Secondary Cells. J. Electrochem. Soc. 141, 2956–2959 (1994).
112. Faure, C., Delmas, C. & Willmann, P. Electrochemical behavior of α-cobalted nickel hydroxide electrodes. J. Power Sources 36, 497–506 (1991).
113. Tessier, C., Guerlou-Demourgues, L., Faure, C., Demourgues, A. & Delmas, C. Structural study of zinc-substituted nickel hydroxides. J. Mater. Chem. 10, 1185–1193 (2000).
114. Chen, H. et al. Effects of coprecipitated zinc on the structure and electrochemical performance of Ni/Al-layered double hydroxide. Int. J. Hydrogen Energy 27, PII S0360–3199(01)00175–6 (2002).
115. Dixit, M., Kamath, P. V. & Gopalakrishnan, J. Zinc‐Substituted α‐Nickel Hydroxide as an Electrode Material for Alkaline Secondary Cells. J. Electrochem. Soc. 146, 79–82 (1999).
116. Gao, X., Lei, L., Hu, M., Qin, L. & Sun, Y. Structure, morphology and electrochemical performance of Zn-doped [Ni4Al(OH)10]OH. J. Power Sources 191, 662–668 (2009).
117. Béléké, A. B. & Mizuhata, M. Electrochemical properties of nickel-aluminum layered double hydroxide/carbon composite fabricated by liquid phase deposition. J. Power Sources 195, 7669–7676 (2010).
118. Chen, H. et al. Physicochemical Properties and Electrochemical Performance of Al-substituted α Ni (OH) 2 with Additives for Ni-Metal Hydride Batteries. J. Electrochem. Soc. 150, A1399–A1404 (2003).
119. Béléké, A. B., Higuchi, E., Inoue, H. & Mizuhata, M. Durability of nickel–metal hydride (Ni–MH) battery cathode using nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite. J. Power Sources 247, 572–578 (2014).
120. Yao, J., Li, Y., Li, Y., Zhu, Y. & Wang, H. Enhanced cycling performance of Al-substituted α-nickel hydroxide by coating with β-nickel hydroxide. J. Power Sources 224, 236–240 (2013).
121. Hu, M., Lei, L., Chen, J. & Sun, Y. Improving the high-temperature performances of a layered double hydroxide, [Ni4Al(OH)10]NO3, through calcium hydroxide coatings. Electrochim. Acta 56, 2862–2869 (2011).
122. Wu, Q. D., Liu, S., Li, L., Yan, T. Y. & Gao, X. P. High-temperature electrochemical performance of Al-α-nickel hydroxides modified by metallic cobalt or Y(OH)3. J. Power Sources 186, 521–527 (2009).
123. Wu, Q. D. et al. Microstructure and electrochemical properties of Al-substituted nickel hydroxides modified with CoOOH nanoparticles. J. Phys. Chem. C 111, 17082–17087 (2007).
124. Béléké, A. B., Higuchi, E., Inoue, H. & Mizuhata, M. Effects of the composition on the properties of nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite fabricated by liquid phase deposition (LPD). J. Power Sources 225, 215–220 (2013).
125. Hu, M., Yang, Z., Lei, L. & Sun, Y. Structural transformation and its effects on the electrochemical performances of a layered double hydroxide. J. Power Sources 196, 1569–1577 (2011).
126. Li, J. et al. Synthesis, characterization and electrochemical performance of high-density aluminum substituted α-nickel hydroxide cathode material for nickel-based rechargeable batteries. J. Power Sources 270, 121–130 (2014).
127. Zhang, L., Li, P., Li, D., Guo, S. & Wang, E. Effect of freeze-thawing on lipid bilayer-protected gold nanoparticles. Langmuir 24, 3407–3411 (2008).
128. Albert, G. C., Roumeliotis, M. & Carson, J. J. L. The effect of temperature and freeze–thaw processes on gold nanorods. Nanotechnology 20, 505502 (2009).
129. Chou, K.-S., Liu, H.-L., Kao, L.-H., Yang, C.-M. & Huang, S.-H. A novel granulation technique using a freeze–thaw method. Ceram. Int. 40, 8875–8878 (2014).
130. Chou, K.-S., Liu, H.-L., Kao, L.-H., Yang, C.-M. & Huang, S.-H. A quick and simple method to test silica colloids’ ability to resist aggregation. Colloids Surfaces A Physicochem. Eng. Asp. 448, 115–118 (2014).
131. Parks, G. a. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65, 177–198 (1965).
132. Zimmerman, A. H. & Phan, A. H. Capacity fading in the nickel electrode. Hydrog. Met. Hydride Batter. 329–340 (1994).
133. French, H. M., Henderson, M. J., Hillman, A. R. & Vieil, E. Ion and solvent transfer discrimination at a nickel hydroxide film exposed to LiOH by combined electrochemical quartz crystal microbalance (EQCM) and probe beam deflection (PBD) techniques. J. Electroanal. Chem. 500, 192–207 (2001).
134. Edison, T. A. Storage battery. (1914).
135. Benson, P., Briggs, G. W. D. & Wynne-Jones, W. F. K. The cobalt hydroxide electrode—II. Electrochemical behaviour. Electrochim. Acta 9, 281–288 (1964).
136. Pralong, V., Delahaye-Vidal, a., Beaudoin, B., Leriche, J.-B. & Tarascon, J.-M. Electrochemical Behavior of Cobalt Hydroxide Used as Additive in the Nickel Hydroxide Electrode. J. Electrochem. Soc. 147, 1306 (2000).
137. Armstrong, R. D., Briggs, G. W. D. & Charles, E. A. Some effects of the addition of cobalt to the nickel hydroxide electrode. J. Appl. Electrochem. 18, 215–219 (1988).
138. Sood, A. K. Studies on the effect of cobalt addition to the nickel hydroxide electrode. J. Appl. Electrochem. 16, 274–280 (1986).
139. Elumalai, P., Vasan, H. N. & Munichandraiah, N. Electrochemical studies of cobalt hydroxide - an additive for nickel electrodes. J. Power Sources 93, 201–208 (2001).
140. Wang, X., Luo, H., Yang, H., Sebastian, P. J. & Gamboa, S. a. Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. Int. J. Hydrogen Energy 29, 967–972 (2004).
141. Hu, Z. A. et al. Synthesis of r-cobalt hydroxides with different intercalated anions and effects of intercalated anions on their morphology, basal plane spacing, and capacitive property. J. Phys. Chem. C 113, 12502–12508 (2009).
142. Zhao, T., Jiang, H. & Ma, J. Surfactant-assisted electrochemical deposition of ??-cobalt hydroxide for supercapacitors. J. Power Sources 196, 860–864 (2011).
143. Pralong, V., Delahaye-Vidal, A., Beaudoin, B., Gérand, B. & Tarascon, J.-M. Oxidation mechanism of cobalt hydroxide to cobalt oxyhydroxide. J. Mater. Chem. 9, 955–960 (1999).
144. Hubbe, M. A. & Rojas, O. J. Colloidal stability and aggregation of Lignocellulosic materials in aqueous suspension: A review. BioResources 3, 1419–1491 (2008).
145. Yu, W. & Xie, H. A review on nanofluids: Preparation, stability mechanisms, and applications. J. Nanomater. 2012, 1–48 (2012).
146. Grasso, D., Subramaniam, K., Butkus, M., Strevett, K. & Bergendahl, J. A review of non-DLVO interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 1, 17–38 (2002).
147. Xu, S. & Sun, Z. Progress in coagulation rate measurements of colloidal dispersions. Soft Matter 7, 11298 (2011).
148. Kretzschmar, R., Holthoff, H. & Sticher, H. Influence of pH and Humic Acid on Coagulation Kinetics of Kaolinite: A Dynamic Light Scattering Study. J. Colloid Interface Sci. 202, 95–103 (1998).
149. Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P. & Sticher, H. Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 12, 5541–5549 (1996).
150. Lee, K. W. & Chen, H. Coagulation Rate of Polydisperse Particles. Aerosol Sci. Technol. 3, 327–334 (1984).
151. Zhou, H., Xu, S., Mi, L., Sun, Z. & Qin, Y. A study on independently using static and dynamic light scattering methods to determine the coagulation rate. J. Chem. Phys. 141, 094302 (2014).
152. Shukla, D. & Mehra, A. A model for particle coagulation in reverse micelles with a size dependent coagulation rate. Nanotechnology 17, 261–267 (2006).
153. Prasher, R., Phelan, P. E. & Bhattacharya, P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 6, 1529–1534 (2006).