簡易檢索 / 詳目顯示

研究生: 陳亮君
Chen, Liang-Chun
論文名稱: 利用隨機漫步模型來偵測藥物之共同標的以對抗細菌之抗藥性
Identifying Co-targets to Fight Drug Resistance Based on a Random Walk Model
指導教授: 蘇豐文
Soo, Von-Wun
口試委員: 張晃猷
Chang, Hwan-You
黃國源
Huang, Kou-Yuan
蘇豐文
Soo, Von-Wun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 59
中文關鍵詞: 抗藥性共同標的隨機漫步演算法結核桿菌A* 漸進搜尋法
外文關鍵詞: Drug resistance, Co-target, Random walk, Mycobacterium Tuberculosis, A* search
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,細菌頑強的抗藥性對於人類健康及疾病治療構成了嚴重威脅,雖然
    全球的生物研究實驗室針對此議題發展出各式對抗細菌抗藥性的方法,但由於無
    法全盤掌握細菌對抗藥物之機制及生物路徑,故此問題仍無法完全解決且持續在
    研究。
    為了解決此問題,我們利用物種的蛋白質互動網路,經由漸進式搜尋演算法
    來擷取有關細菌對藥物的反應路徑,並利用隨機漫步模型來辨識蛋白質網路中能
    有效輔助抗生素殺死細菌的共同標的─co-target。
    我們選擇具有高度感染力且接受Isoniazid (INH) 及Ethionamide (ETA)兩種抗
    生素治療的結核桿菌( Mycobacterium tuberculosis )作為研究來源,發現觸發細菌
    的葉酸代謝、脂肪酸代謝及菸鹼胺腺嘌呤二核苷酸相關過程對於細菌在施予抗生
    素時的存活有很大的響力,結核桿菌有關於藥物排出幫浦機制在此兩種抗生素治
    療成為主要抗藥機轉,結果顯示乙醯輔酶A 羧化酶與葉酸代謝、脂肪酸代謝有關
    聯,且在細菌抗藥機制中有很強的影響性。
    實驗分析的結果與已發表的文獻一致,我們發現關於調控富含甘胺酸細胞膜
    之基因、三磷酸腺苷能量代謝之基因,以及與組成細胞壁之生物代謝過程有關連
    之基因可能為有效的共同標的,能用以輔助對抗結核桿菌之抗藥機制。
    關鍵字:抗藥性、A* 漸進搜尋法、共同標的、隨機漫步演算法、結核桿菌


    Drug resistance has now posed more severe and emergent threats to human
    health and infectious disease treatment. However, the wet-lab approaches alone to
    counter drug resistance have so far still achieved limited success in understanding the
    underlying mechanisms and pathways of drug resistance.
    Our approach applied a heuristic search algorithm in order to extract drug
    response pathways from protein-protein interaction networks and used a random walk
    model to identify the potential co-target for effective antibacterial drugs. In this paper,
    we chose one of the killer infectious diseases, etiological organisms Mycobacterium
    tuberculosis (Mtb) as our test bed that was treated with Isoniazid (INH) and
    Ethionamide (ETA). We discovered that both of the genes in INH and ETA networks
    would facilitate survival related to triggering the processes in mycobactin synthesis,
    fatty acid synthesis/metabolism, and NADH-related processes. Efflux pumps appear
    to be the major mechanisms of resistance under INH and ETA drug treatment in Mtb.
    The results showed that the acetyl-CoA carboxylase is believed to be involved in fatty
    acid and mycolic acid biosynthesis and is strongly associated with the drug resistance
    mechanisms. Our analysis is consistent with the recent experimental findings and also
    found glycine-rich membrane, Adenosine triphosphate energy and cell wall-related
    processes to be potential co-targets for countering drug resistance.
    III
    keywords : Drug resistance, A* search, Co-target, Random walk,
    Mycobacterium Tuberculosis

    摘要 ............................................................................................................ I ABSTRACT ............................................................................................. II ACKNOWLEDGEMENT ...................................................................... IV LIST OF CONTENTS ............................................................................... V LIST OF FIGURES ................................................................................. VI LIST OF TABLES ................................................................................. VII 1. INTRODUCTION ............................................................................... 1 2. SYSTEM ARCHITECTURE AND WORKFLOW ............................ 8 2.1 Network construction from microarray data and protein-protein interactions database ……………………………………….…9 2.2 A* algorithm as heuristic search ............................................... 11 2.3 Random walk to discover co-target ........................................... 15 2.3.1 Initial probability for primary drug treatment using RW .. 15 2.3.2 Discovering potential co-target ......................................... 17 3. COMPUTATIONAL EXPERIMENTS AND RESULTS ................. 21 3.1 Gene expression analysis in treated Mtb : Isoniazid and Ethionamide ................................................................................ 22 3.2 The drug response and resistance pathways of the antibiotic treatment ................................................................................... 25 3.3 The potential co-target discovered by random walks ................ 39 4. CONCLUSION .................................................................................... 44 AKNOWLEDGEMET OF GRANTS ...................................................... 46 REFERENCES ......................................................................................... 46

    [1] Tan, Y. T., Tillett, D. J. and McKay, I. A. 2000. Molecular strategies for
    overcoming antibiotic resistance in bacteria. Molecular medicine today.
    6(8):309-314.
    [2] Raman, K. and Chandra, N. 2008. Mycobacterium tuberculosis interactome
    analysis unravels potential pathways to drug resistance. BMC Microbiology.
    8(234):1471-2180.
    [3] Nacu, S., Rebecca, C. T., Lee, P. and Holmes, S. 2007. Gene expression network
    analysis and applications to immunology . Bioinformatics. 23(7):850-858.
    [4] Qiu, Y. Q., Zhang, S. and Zhang, X. S. 2008. Uncovering differentially
    expressed pathways with protein interaction and gene expression data. The Second
    International Symposium on Optimization and Systems Biology. Pp:74-82.
    [5] Scott, J., Ideker, T., Karp, R. M. and Sharan, R. 2005. Efficient algorithms for
    detecting signaling pathways in protein interaction networks. Ninth Annual
    47
    International Conference on Research in Computational Molecular Biology. LNBI
    3500: 1-13.
    [6] Sohler, F., Hanisch, D. and Zimmer, R. 2004. New methods for joint analysis of
    biological networks and expression data. Bioinformatics. 20(10):1517-1521.
    [7] Zhao, X., Wang, R., Chen, L. and Aihara, K. 2007. Automatic modeling of
    signal pathways from protein-protein interaction networks. Proceedings Trim Size.
    3:42.
    [8] ldeker, T., Ozier, O., Schwikowski, B. and Siegel, A. F. 2002. Discovering
    regulatory and signaling circuits in molecular interaction networks. Bioinformatics.
    18:S233-S240
    [9] Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T. and Muller, T.
    2008. Identifying functional modules in protein-protein interaction networks.
    Bioinformatics. 24(13):i223-i231.
    [10] Breitling, R., Amtmann, A. and Herzyk, P. 2004. Graph-based iterative Group
    Analysis enhances microarray interpretation. BMC Bioinformatics. 5:100.
    [11] Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang,
    M., Yang, D. and Wang, J. 2007. Edge-based scoring and searching method for
    identifying condition-responsive protein–protein interaction sub-network.
    Bioinformatics. 23(16):2121-2128.
    48
    [12] Han, J., Bertin, N., Hao, T., Goldberg, D. S., Berriz, G. F., Zhang, L. V.,
    Dupuy, D., Walhout, A. J. M., Cusick, M. E., Roth, F. P. and Vidal, M. 2004.
    Evidence for dynamically organized modularity in the yeast protein–protein
    interaction network. Nature. 430:88-93.
    [13] Maslov, S. and Sneppen, K. 2002. Specificity and Stability in Topology of
    Protein Networks. Science, 296(5569): 910-913.
    [14] Yook, S., Oltvai, Z. and Barabasi, A. 2004. Functional and topological
    characterization of protein interaction networks, Proteomics, 4:928-942.
    [15] Ayati, M., Taheri, G., Arab, S., Wong, L. and Eslahchi, C. 2010. Overcoming
    Drug Resistance by Co-Targeting. IEEE International Conference on
    Bioinformatics & Biomedicine.
    [16] Smith, P. A. and Romesberg, F. E. 2007. Combating bacteria and drug
    resistance by inhibiting mechanisms of persistence and adaptation. nature
    chemical biology. 3(9):549-556.
    [17] von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P. and Snel, B.
    2003. STRING: a database of predicted functional associations between proteins.
    Nucleic Acids Research. 31(1):258-261.
    [18] Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D.,
    Gautam, B. and Hassanali, M. 2008. DrugBank: a knowledgebase for drugs,
    49
    drug actions and drug targets. Nucleic Acids Research. 36:D901-D906.
    [19] Nguyen, L. and Thompson, C. J. 2006. Foundations of antibiotic resistance in
    bacterial physiology: the mycobacterial paradigm. TRENDS in Microbiology.
    14(7):304-312.
    [20] Dijkstra, E. W. 1959. A Note on Two Problems in Connexion with Graphs.
    Numerische Mathematik. 1:269-271.
    [21] Kohler, S., Bauer, S., Horn, D. and Robinson, P. N. 2008. Walking the
    Interactome for Prioritization of Candidate Disease Genes. The American Journal
    of Human Genetics. 82(4):949-958.
    [22] Boshoff, H. I. M., Myers, T. G., Copp, B. R., McNeil, M. R., Wilson, M. A.
    and Barry, C. E. 2004. The transcriptional responses of Mycobacterium
    tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of
    action. The Journal of BiologicalChemistry. 279(38):40174-40184.
    [23] Huang, D., Sherman, B. and Lempicki, R. 2009. Systematic and integrative
    analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc.,
    4(1):44-57.
    [24] Savvi, S., Warner, D. F., Kana, B. D., McKinney, J. D., Mizrahi, V. and
    Dawes, S. S. 2008. Functional Characterization of a Vitamin B12-Dependent
    Methylmalonyl Pathway in Mycobacterium tuberculosis: Implications for
    50
    Propionate Metabolism during Growth on Fatty Acids. Journal of Bacteriology.
    190(11):3886-3895.
    [25] Seepe, P. M., Victor, T., Warren, R. and Louw, G. E. 2011. Differential
    Expression of Gene in Clinical Strains of Mycobacterium Tuberculosis in
    Response to Isonizazid. thesis
    [26] Morita, Y. S., Velasquez, R., Taig, E., Waller, R. F., Patterson, J. H., Tull, D.,
    Williams, S. J., Billman-Jacobe, H. and McConville, M. J. 2005.
    Compartmentalization of lipid biosynthesis in mycobacteria. J. Biol. Chem.
    280:21645-21652.
    [27] Besra, G. S. and Brennan, P. J. 1997. The mycobacterial cell wall: biosynthesis
    of arabinogalactan and lipoarabinomannan. Biochem. Soc. Trans. 25:845-850.
    [28] Barry, C. E., Lee, R. E., Mdluli, K., Sampson, A. E., Schroeder, B. G.,
    Slayden, R. A. and Yuan, Y. 1998. Mycolic acids: structure, biosynthesis and
    physiological functions. Prog. Lipid Res. 37:143-179.
    [29] Ehrt, S. and Schnappinger, D. 2009. Mycobacterial survival strategies in the
    phagosome: defence against host stresses. Cell Microbiol 11:1170-1178.
    [30] Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Urn, K. S.,
    Wilson, T., Collins, D., de Lisle, G. and Jacobs, W. R. Jr. 1994. inhA, a gene
    encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis.
    51
    Science 263 (5144):227-230.
    [31] Wilson, M., DeRisi, J., Kristensen, H. H., Imboden, P., Rane, S., Brown, P.
    O. and Schoolnik, G. K. 1999. Exploring drug-induced alterations in gene
    expression in Mycobacterium tuberculosis by microarray hybridization. PANS.
    96(22):12833-12838.
    [32] Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D.,
    Gordon, S. V., Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K.,
    Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K.,
    Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K.,
    Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail,
    M. A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J.,
    Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S. and Barrell,
    B. G. 1998. Deciphering the biology of Mycobacterium tuberculosis from the
    complete genome sequence. Nature. 393(6685):537-44.
    [33] Kapetanaki, S. M., Chouchane, S., Yu, S., Zhao, X., Magliozzo, R. S. and
    Schelvis, J. P. 2005. Mycobacterium tuberculosis KatG(S315T)
    catalase-peroxidase retains all active site properties for proper catalytic function.
    Biochemistry. 44:243-252.
    [34] Zhao, X., Yu, H., Yu, S., Wang, F., Sacchettini, J. C. and Magliozzo, R. S.
    52
    2006. Hydrogen Peroxide-Mediated Isoniazid Activation Catalyzed by
    Mycobacterium tuberculosis Catalase-Peroxidase (KatG) and Its S315T Mutant.
    Biochemistry. 45:4131-4140.
    [35] Milano, A., Forti, F., Sala, C., Riccardi, G. and Ghisotti, D. 2001.
    Transcriptional regulation of furA and katG upon oxidative stress in
    Mycobacterium smegmatis. J. Bacteriol. 183:6801-6806.
    [36] Pym, A. S., Domenech, P., Honore, N., Song, J., Deretic, V. and Cole, S. T.
    2001. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity
    and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol.
    40:879-889.
    [37] Zahrt, T. C., Song, J., Siple, J. and Deretic, V. 2001. Mycobacterial FurA is a
    negative regulator of catalase-peroxidase gene katG. Mol. Microbiol.
    39:1174-1185.
    [38] Guimaraes, B. G., Souchon, H., Honore, N., Saint-Joanis, B., Brosch, R.,
    Shepard, W., Cole, S. T. and Alzari, P. M.. 2005. Structure and Mechanism of
    the Alkyl Hydroperoxidase AhpC, a Key Element of the Mycobacterium
    tuberculosis Defense System against Oxidative Stress. J. Biol. Chem.
    280:25735-25742.
    [39] Lee, A. S., Teo, A. S. and Wong, S. Y. 2001. Novel mutations in ndh in
    53
    isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents
    Chemother. 45:2157-2159.
    [40] Vilcheze, C., Weisbrod, T. R., Chen, B., Kremer, L., Hazbon, M. H., Wang,
    F., Alland, D., Sacchettini, J. C. and Jacobs, W. R. Jr. 2005. Altered
    NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in
    mycobacteria. Antimicrob. Agents Chemother. 49:708-720.
    [41] Argyrou, A., Vetting, M. W., Aladegbami, B. and Blanchard, J. S. 2006.
    Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nat.
    Struct. Mol. Biol. 13:408-413.
    [42] White, E. L., Ross, L. J., Cunningham, A. and Escuyer, V. 2004. Cloning,
    expression, and characterization of Mycobacterium tuberculosis dihydrofolate
    reductase. FEMS Microbiol. Lett. 232:101-105.
    [43] Vilcheze, C., Morbidoni, H. R., Weisbrod, T. R., Iwamoto, H., Kuo, M.,
    Sacchettini, J. C. and Jacobs, W. R. Jr. 2000. Inactivation of the inhA-encoded
    fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces
    accumulation of the FASI end products and cell lysis of Mycobacterium
    smegmatis. J. Bacteriol. 182:4059-4067.
    [44] Vilcheze, C., Wang, F., Arai, M., Hazbon, M. H., Colangeli, R., Kremer, L.,
    Weisbrod, T. R., Alland, D., Sacchettini, J. C. and Jacobs, W. R. Jr. 2006.
    54
    Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the
    target of isoniazid. Nat. Med. 12:1027-1029.
    [45] Kremer, L., Nampoothiri, K. M., Lesjean, S., Dover, L. G., Graham, S.,
    Betts, J., Brennan, P. J., Minnikin, D. E., Locht, C. and Besra, G. S. 2001.
    Biochemical characterization of acyl carrier protein (AcpM) and
    malonyl-CoA:AcpM transacylase (mtFabD), two major components of
    Mycobacterium tuberculosis fatty acid synthase II. J. Biol. Chem.
    276:27967-27974.
    [46] Schaeffer, M. L., Agnihotri, G., Kallender, H., Brennan, P. J. and Lonsdale,
    J. T. 2001. Expression, purification, and characterization of the Mycobacterium
    tuberculosis acyl carrier protein, AcpM. Biochim. Biophys. Acta 1532:67-78.
    [47] Bhatt, A., Kremer, L., Dai, A. Z., Sacchettini, J. C. and Jacobs, W. R. Jr.
    2005. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis,
    leads to mycobacterial cell lysis. J. Bacteriol. 187:7596-7606.
    [48] Chen, X., Ma, Y., Jin, Q., Jiang, G. L., Li, C. Y. and Wang, Q. 2005.
    Characterization of the katG, inhA, ahpC, kasA, and oxyR gene mutations in
    isoniazid-resistant and susceptible strain of Mycobacterium tuberculosis by
    automated DNA sequencing]. Zhonghua Jie.He.He.Hu Xi.Za Zhi. 28:250-253.
    [49] Schweizer, E. and Hofmann, J. 2004. Microbial type I fatty acid synthases
    55
    (FAS): major players in a network of cellular FAS systems. Microbiol. Mol. Biol.
    Rev. 68:501-17
    [50] Huang, Y. S., Ge, J., Zhang, H. M., Lei, J. Q., Zhang, X. L. and Wang, H. H.
    2006. Purification and characterization of the Mycobacterium tuberculosis FabD2,
    a novel malonyl-CoA:AcpM transacylase of fatty acid synthase. Protein Expr.
    Purif. 45:393-399.
    [51] Goyal, A., Yousuf, M., Rajakumara, E., Arora, P., Gokhale, R. S. and
    Sankaranarayanan, R. 2006. Crystallization and preliminary X-ray
    crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP
    ligase from Mycobacterium tuberculosis. Acta Crystallograph. Sect. F. Struct. Biol.
    Cryst. Commun. 62:350-352.
    [52] Gande, R., Gibson, K. J., Brown, A. K., Krumbach, K., Dover, L. G., Sahm,
    H., Shioyama, S., Oikawa, T., Besra, G. S. and Eggeling, L. 2004. Acyl-CoA
    carboxylases (accD2 and accD3), together with a unique polyketide synthase
    (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as
    Corynebacterium glutamicum and Mycobacterium tuberculosis. J. Biol. Chem.
    279:44847-44857
    [53] Portevin, D., Sousa-D'Auria, C., Montrozier, H., Houssin, C., Stella, A.,
    Laneelle, M. A., Bardou, F., Guilhot, C. and Daffe, M. 2005. The acyl-AMP
    56
    ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the
    synthesis of mycolic acids and essential for mycobacterial growth: identification
    of the carboxylation product and determination of the acyl-CoA carboxylase
    components. J. Biol. Chem. 280:8862-8874.
    [54] Wallis, R. S., Phillips, M., Johnson, J. L., Teixeira, L., Rocha, L. M., Maciel,
    E., Rose, L., Wells, C., Palaci, M., Dietze, R., Eisenach, K. and Ellner, J. J.
    2001. Inhibition of isoniazid-induced expression of Mycobacterium tuberculosis
    antigen 85 in sputum: potential surrogate marker in tuberculosis chemotherapy
    trials. Antimicrob. Agents Chemother. 45:1302-1304.
    [55] Alland, D., Steyn, A. J., Weisbrod, T., Aldrich, K. and Jacobs, W. R. Jr.
    2000. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a
    promoter that responds to cell wall biosynthesis inhibition. J. Bacteriol.
    182:1802-1811.
    [56] Colangeli, R., Helb, D., Sridharan, S., Sun, J., Varma-Basil, M., Hazbon, M.
    H., Harbacheuski, R., Megjugorac, N. J., Jacobs, W. R. Jr., Holzenburg, A.,
    Sacchettini, J. C. and Alland, D. 2005. The Mycobacterium tuberculosis iniA
    gene is essential for activity of an efflux pump that confers drug tolerance to both
    isoniazid and ethambutol. Mol.Microbiol. 55:1829-1840.
    [57] Colangeli, R., Helb, D., Sridharan, S., Sun, J., Varma-Basil, M., Hazbon, M.
    57
    H., Harbacheuski, R., Megjugorac, N. J., Jacobs, W. R. Jr., Holzenburg, A.,
    Sacchettini, J. C. and Alland, D. 2005. The Mycobacterium tuberculosis iniA
    gene is essential for activity of an efflux pump that confers drug tolerance to both
    isoniazid and ethambutol. Mol.Microbiol. 55:1829-1840.
    [58] Alland, D., Steyn, A. J., Weisbrod, T., Aldrich, K. and Jacobs, W. R. Jr.
    2000. Characterization of the Mycobacterium tuberculosis iniBAC promoter, a
    promoter that responds to cell wall biosynthesis inhibition. J.Bacteriol.
    182:1802-1811.
    [59] Lomovskaya, O. and Watkins, W. J. 2001. Efflux pumps: their role in
    antibacterial drug discovery. Curr.Med.Chem. 8:1699-1711
    [60] Danilchanka, O., Mailaender, C. and Niederweis, M. 2008. Identification of a
    novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob.Agents
    Chemother. 52:2503-2511.
    [61] Doran, J. L., Pang, Y., Mdluli, K. E., Moran, A. J., Victor, T. C., Stokes, R.
    W., Mahenthiralingam, E., Kreiswirth, B. N., Butt, J. L., Baron, G. S., Treit,
    J. D., Kerr, V. J., van Helden, P. D., Roberts, M. C. and Nano, F. E. 1997.
    Mycobacterium tuberculosis efpA encodes an efflux protein of the QacA
    transporter family. Clin.Diagn. Lab Immunol. 4:23-32.
    [62] Kahnert, A., Seiler, P., Stein, M., Bandermann, S., Hahnke, K., Mollenkopf,
    58
    H. and Kaufman, S. H. 2006. Alternative activation deprives macrophages of a
    coordinated defense program to Mycobacterium tuberculosis. Eur. J. Immunol.
    36:631-647.
    [63] Molle, V., Soulat, D., Jault, J. M., Grangeasse, C., Cozzone, A. J. and Prost,
    J. F. 2004. Two FHA domains on an ABC transporter, Rv1747, mediate its
    phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium
    tuberculosis. FEMS Microbiol. Lett. 234:215-223.
    [64] Molle, V., Soulat, D., Jault, J. M., Grangeasse, C., Cozzone, A. J. and Prost,
    J. F. 2004. Two FHA domains on an ABC transporter, Rv1747, mediate its
    phosphorylation by PknF, a Ser/Thr protein kinase from Mycobacterium
    tuberculosis. FEMS Microbiol. Lett. 234:215-223.
    [65] Braibant, M., Gilot, P. and Content, J. 2000. The ATP binding cassette (ABC)
    transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev.
    24:449-467.
    [66] Gupta, A. K., Reddy, V. P., Lavania, M., Chauhan, D. S., Venkatesan, K.,
    Sharma, V. D., Tyagi, A. K. and Katoch, V. M. 2010. jefA (Rv2459), a drug
    efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid &
    ethambutol. Indian J. Med. Res. 132:176-188.
    [67] Mann, S. and Ploux, O. 2006. 7,8-Diaminoperlargonic acid aminotransferase
    59
    from Mycobacterium tuberculosis, a potential therapeutic target. Characterization
    and inhibition studies. 273(20):4778-4789.
    [68] Mir, M. A., Rajeswari, H. S., Veeraraghavan, U. and Ajitkumar, P. 2006.
    Molecular characterisation of ABC transporter type FtsE and FtsX proteins of
    Mycobacterium tuberculosis. Arch Microbiol. 185:147-158.
    [69] McDonough, J. A., McCann, J. R., Tekippe, E. M., Silverman, J. S., Rigel, N.
    W. and Braunstein, M. 2008. Identification of functional Tat signal sequences in
    Mycobacterium tuberculosis proteins. Journal of Bacteriology. 190(19):
    6428–6438.
    [70] Morita, Y. S., Velasquez, R., Taig, E., Waller, R. F., Patterson, J. H., Tull, D.,
    Williams, S. J., Billman-Jacobe, H. and McConville, M. J. 2005.
    Compartmentalization of lipid biosynthesis in mycobacteria. J. Biol. Chem.
    280:21645-21652.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE