簡易檢索 / 詳目顯示

研究生: 鄭閎之
Cheng, Hung-Chih
論文名稱: 以二硫化鎢與二硒化鎢異質結構改善接觸能障之研究
Improvement of Contact Barrier by using WS2 / WSe2 Heterostructure
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 林彥甫
Lin, Yen-Fu
李奎毅
Lee, Kuei-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 70
中文關鍵詞: 過渡金屬二硫族化物異質結構蕭特基能障改善接觸能障
外文關鍵詞: transition metal dichalcogenides, heterostructure, schottky barrier, Improve contact barrier
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2004年曼徹斯特大學物理學家Andre Konstantin Geim和Konstantin Novoselov團隊利用機械剝離法,運用膠帶反覆黏貼,將單層的石墨烯從石墨中剝離出來,此後便開啟了大量二維材料方面的研究,近年來最受矚目的材料便是過渡金屬二硫族化物(TMDs)。本論文利用WS2/WSe2梳狀異質結構作為與金屬接觸的部分,製作了NMOS與PMOS。其Type-II的能帶結構造成大量的電荷轉移,電子由WSe2轉移至WS2,而電洞由WS2轉移至WSe2,由此改善了以往接觸能障過大的問題。本論文中WS2電晶體其蕭特基能障為28 meV,而WSe2電晶體其蕭特機能障為 34 meV,載子遷移率分別為6.61 cm2
    /V ·s與1.3 cm2
    /V ·s,此外我們也有進行TLM量測,照光前接觸電阻為891 kΩ • µm,照光後接觸電阻降為585 kΩ • µm,這是由於照光後產生的電子電洞對被內建電場分離,電荷的轉移使得能障進一步下降。


    In 2004, physicists Andre Konstantin Geim and Konstantin Novoselov from the University of Manchester utilized a mechanical exfoliation method, repeatedly using adhesive tape to peel off single layers of graphene from graphite, thus initiating extensive research on two-dimensional materials. In recent years, one of the most prominent materials in this field is Transition Metal Dichalcogenides (TMDs). In this work, a WS2/WSe2 strip shape heterostructure was employed as the contact region with metals to fabricate NMOS and PMOS devices. The Type-II band structure resulted in charge transfer, with electrons transferring from WSe2 to WS2 and holes transferring from WS2 to WSe2, thereby reduce the contact barrier. In this study, the Schottky barrier of the WS2 transistor was measured to be 4meV, while the Schottky barrier of the WSe2 transistor was 18meV. The carrier mobility was reported as 6.61 cm2
    /V ·s and 1.3 cm2
    /V ·s for WS2 and WSe2, respectively. Additionally, Transmission Line Measurement (TLM) was also conducted, showing that the contact resistance decreased from 891 kΩ • µm before illumination to 585 kΩ • µm after illumination. This decrease can be attributed to the separation of electron-hole pairs generated by illumination, facilitated by the built-in electric field, resulting in a further reduction of the barrier height.

    摘要i Abstract ii 致謝 iii 目錄 v 第1章 緒論 1 1.1 半導體的發展史 1 1.2 半導體製程的微縮與限制 3 1.3 二維半導體發展 5 1.4 論文架構 8 第2章 過渡金屬二硫族化物介紹 9 2.1 過渡金屬二硫族化物組成 9 2.2 過渡金屬二硫族化物晶格結構 10 2.3 電子能帶 11 第3章 材料製備方法與檢測 14 3.1 二維材料製備方式 14 3.1.1 機械剝離法 14 3.1.2 化學氣相沉積法 14 3.2 拉曼光譜檢測 16 3.3 光致螢光光譜檢測 17 3.4 二硫化鎢與二硒化鎢異質接面檢測 20 第 4 章 半導體與金屬接面探討 23 4.1 蕭特基接觸與歐姆接觸 23 4.2 過度金屬二硫族化物與金屬接觸的機制 24 4.3 費米能階釘扎效應 27 4.4 蕭特基位障量測原理 31 4.5 接觸電阻之分析 33 4.5.1 接觸電阻量測方法 33 4.5.2 降低接觸電阻之方法 35 第5章 實驗步驟與量測分析 36 5.1 使用設備簡介 36 5.2 製程步驟 40 5.2.1 二硫化鎢電晶體製程步驟 40 5.2.2 二硒化鎢電晶體製程步驟 41 5.2.3 TLM 製程步驟 42 5.3製程細節 43 5.4元件量測系統 51 5.5元件量測結果分析 52 5.5.1 二硫化鎢電晶體電性量測 52 5.5.2 二硫化鎢電晶體蕭特機能障萃取 56 5.5.3 二硒化鎢電晶體電性量測 60 5.5.4 二硒化鎢電晶體蕭特基能障萃取 61 5.5.5 接觸電阻量測分析 65 第6章 實驗總結與未來展望 67 參考文獻 68

    [1] “History of the transistor (the crystal triode).” [Online; accessed 14-January-2023]. [2] B. Bilal, S. Ahmed, and V. Kakkar, “An insight into beyond cmos next genera-
    tion computing using quantum-dot cellular automata nanotechnology,” International Journal of Engineering and Manufacturing, vol. 8, no. 1, p. 25, 2018.
    [3] Wikipedia contributors, “Integrated circuit,” 2023. [Online; accessed 18-July-2023]. [4] Wikipedia contributors, “Moore’s law — Wikipedia, the free encyclopedia,” 2023.
    [Online; accessed 14-January-2023].
    [5]“Cpu finfet,” 2023. [Online; accessed 18-July-2023].
    [6] K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, and V. Khranovskyy, “Application of 2d non-graphene materials and 2d oxide nanostructures for biosensing technology,” Sensors, vol. 16, no. 2, p. 223, 2016.
    [7] Wikipedia contributors, “Graphene,” 2023. [Online; accessed 18-July-2023]. [8] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chem-
    istry of two-dimensional layered transition metal dichalcogenide nanosheets,” Na- ture chemistry, vol. 5, no. 4, pp. 263–275, 2013.
    [9] Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature nanotechnology, vol. 7, pp. 699–712, 11 2012.
    [10] M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, “The chemistry of two- dimensional layered transition metal dichalcogenide nanosheets,” Nature chemistry, vol. 5, pp. 263–275, 04 2013.
    [11] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,” Chemical reviews, vol. 113, 01 2013.
    [12] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, et al., “Photoluminescence emission and raman response of monolayer mos 2, mose 2, and wse 2,” Optics express, vol. 21, no. 4, pp. 4908–4916, 2013.
    [13] jamiehou, “Pl 技術用於 led 材料特性檢測,” 2023. [Online; accessed 18-July-2023].
    [14] S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D. S. Narang, K. Liu, J. Ji, J. Li, et al., “Tuning interlayer coupling in large-area heterostructures with cvd-grown mos2 and ws2 monolayers,” Nano letters, vol. 14, no. 6, pp. 3185–3190, 2014.
    [15] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang, “Ultrafast charge transfer in atomically thin mos2/ws2 heterostructures,” Nature nanotechnology, vol. 9, no. 9, pp. 682–686, 2014.
    [16] W. Xu, D. Kozawa, Y. Zhou, Y. Wang, Y. Sheng, T. Jiang, M. S. Strano, and J. H. Warner, “Controlling photoluminescence enhancement and energy transfer in ws2: hbn: Ws2 vertical stacks by precise interlayer distances,” Small, vol. 16, no. 3, p. 1905985, 2020.
    [17] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial fermi level pinning at metal–mos2 interfaces,” Nano letters, vol. 14, no. 4, pp. 1714–1720, 2014.
    [18] R.-S. Chen, G. Ding, Y. Zhou, and S.-T. Han, “Fermi-level depinning of 2d transition metal dichalcogenide transistors,” Journal of Materials Chemistry C, vol. 9, no. 35, pp. 11407–11427, 2021.
    [19] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” p. 031005, 07 2014.
    [20] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molyb- denum dichalcogenides,” ACS Nano, vol. 11, 01 2017.
    [21] C. , L. Colombo, R. Wallace, and K. Cho, “The unusual mechanism of partial fermi level pinning at metal-mos2 interfaces,” Nano letters, vol. 14, 03 2014.
    [22] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nature materials, vol. 14, no. 12, pp. 1195–1205, 2015.
    [23] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, “Study on the resistance distribution at the contact between molybdenum disulfide and metals,” ACS Nano, vol. 8, pp. 7771–7779, 07 2014.
    [24] F. Zhang, Y. Lu, D. S. Schulman, T. Zhang, K. Fujisawa, Z. Lin, Y. Lei, A. L. Elias, S. Das, S. B. Sinnott, et al., “Carbon doping of ws2 monolayers: Bandgap reduction and p-type doping transport,” Science advances, vol. 5, no. 5, p. eaav5003, 2019.
    [25] B. Tang, Z. G. Yu, L. Huang, J. Chai, S. L. Wong, J. Deng, W. Yang, H. Gong, S. Wang, K.-W. Ang, et al., “Direct n-to p-type channel conversion in monolayer/few-layer ws2 field-effect transistors by atomic nitrogen treatment,” ACS nano, vol. 12, no. 3, pp. 2506–2513, 2018.
    [26] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Hung, R. Tieck- elmann, W. Tsai, C. Hobbs, et al., “Chloride molecular doping technique on 2d ma- terials: Ws2 and mos2,” Nano letters, vol. 14, no. 11, pp. 6275–6280, 2014.
    [27] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. N. Abbas, M. Ge, M. Meck- lenburg, and C. Zhou, “Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer wse2 and applications for devices,” ACS nano, vol. 9, no. 7, pp. 7383–7391, 2015.
    [28] h.dr. V.Gavryushin, h.dr. A.ukauskas, “The metal-semiconductor junction. schottky diode,” 2002. [Online; accessed 3-September-2023].
    [29] John Wiley,San Jose, “Physics of semiconductor devices.,” 2007. [Online; accessed 3-September-2023].

    QR CODE