研究生: |
翁子翔 Weng, Tzu-Hsiang |
---|---|
論文名稱: |
螺旋式移動管線檢測機器人之感測器融合與穩定性分析 Sensor Fusion and Stability Analysis of a Spiral-Moving Pipeline Inspection Robot |
指導教授: |
葉廷仁
Yeh, Ting-Jen |
口試委員: |
顏炳郎
Yen, Ping-Lang 劉承賢 Liu, Cheng-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 管線檢測機器人動態 、螺旋軌跡控制 、穩定性分析 、力學分析 |
外文關鍵詞: | dynamics of pipeline robot, stability analysis, force analysis, spiral trajectory control |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一創新的螺旋式移動管線檢測機器人,此管線機器人在結構上為一差動雙輪驅動車加上一可旋轉的支撐臂,並搭配主動式方向輪。機器人在管路中進行檢測時,是採用以支撐臂張開撐住管壁的螺旋攀爬模式。首先,本研究對穩定螺旋移動的姿態做了支撐力學分析與穩定性分析,來了解穩定螺旋運動的成立條件,再根據姿態分析,推導出機器人螺旋攀爬的運動學模型,並得到二階方向角動態方程式。螺旋攀爬的方向角量測將由單一陀螺儀得到,並透過卡爾曼濾波器使量測最佳化。為了讓循跡控制器的強健性更高,本研究將擴階動態方程式以加入積分器,並利用變數變換為誤差狀態模型,接著利用Pole Placement method為機器人設計循跡控制器。最後實現此螺旋式移動管線檢測機器人在水平管、傾斜管與垂直管中進行不同螺距的螺旋攀爬移動。
This research is on the development of a creative pipeline robot with spiral-moving capability. This pipeline inspection robot is a differential wheeled robot with a stretchable supporting arm adding an active direction wheel on the top. When the robot does the inspection work, the robot will stretch the supporting arm, and the normal force on the pipe wall can be maintained adequately. Furthermore, by adjusting the actuation wheels and the direction wheel, a spiral motion can be resulted. In the beginning, this research performs supporting force analysis and stability analysis on the stable spiral-moving attitude to know the conditions of the stable spiral movement. Then, based on the result of the attitude analysis, we deduce the kinematics model of the spiral motion of the robot, and gets the second- order direction angle equation model. In the measurement part, we use gyroscope to get the measurement of direction angle; moreover, we apply Kalman filter to optimize the measurement and to eliminate the noise. To make the trajectory controller more robust, we extend the order of equation to add an integrator; besides, we utilize variable transformation to make the direction angle states become direction angle error states. After that, use Pole Placement method to design controller gain. Finally, we conduct experiments to verify the performance of spiral motion in horizontal pipeline, inclined pipeline, and vertical pipeline with different pitches of spiral.
[1] Marathon Pipe Line LLC.
URL: http://www.marathonpipeline.com
[2] IPS Robot, Manufacturer of pipe habilitation robot.
URL: http://www.ipsrobot.com/
[3] R. Montero, J.G. Victores, S. Martínez, A. Jardón, C. Balaguer, Past, present and future of robotic tunnel inspection, In Automation in Construction, Volume 59, 2015, Pages 99-112, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2015.02.003.
[4] Se-gon Roh and Hyouk Ryeol Choi, "Differential-drive in-pipe robot for moving inside urban gas pipelines," in IEEE Transactions on Robotics, vol. 21, no. 1, pp. 1-17, Feb. 2005.
[5] Y. S. Kwon and B. J. Yi, "Design and Motion Planning of a Two-Module Collaborative Indoor Pipeline Inspection Robot," in IEEE Transactions on Robotics, vol. 28, no. 3, pp. 681-696, June 2012.
[6] H. P. Huang, J. L. Yan and T. H. Cheng, "Development and Fuzzy Control of a Pipe Inspection Robot," in IEEE Transactions on Industrial Electronics, vol. 57, no. 3, pp. 1088-1095, March 2010.
[7] S. Hirose, H. Ohno, T. Mitsui and K. Suyama, "Design of in-pipe inspection vehicles for φ25, φ50, φ150 pipes," Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), Detroit, MI, 1999, pp. 2309-2314 vol.3.
[8] K. Suzumori, T. Miyagawa, M. Kimura and Y. Hasegawa, "Micro inspection robot for 1-in pipes," in IEEE/ASME Transactions on Mechatronics, vol. 4, no. 3, pp. 286-292, Sep 1999.
[9] J. Park, D. Hyun, W. H. Cho, T. H. Kim and H. S. Yang, "Normal-Force Control for an In-Pipe Robot According to the Inclination of Pipelines," in IEEE Transactions on Industrial Electronics, vol. 58, no. 12, pp. 5304-5310, Dec. 2011.
[10] K. Nagaya, T. Yoshino, M. Katayama, I. Murakami and Y. Ando, "Wireless Piping Inspection Vehicle Using Magnetic Adsorption Force," in IEEE/ASME Transactions on Mechatronics, vol. 17, no. 3, pp. 472-479, June 2012.
[11] F. Tache, W. Fischer, R. Siegwart, R. Moser and F. Mondada, "Compact magnetic wheeled robot with high mobility for inspecting complex shaped pipe structures," 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, 2007, pp. 261-266.
[12] M. Horodinca, I. Doroftei, E. Mignon, and A. Preumont, "A simple architecture for in-pipe inspection robots," Proc. Int. Colloq. Mobile, Autonomous Systems, pp. 61-64, 2002.
[13] D. Chatzigeorgiou, K. Youcef-Toumi and R. Ben-Mansour, "Design of a Novel In-Pipe Reliable Leak Detector," in IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 824-833, April 2015.
[14] J. Min, Y. D. Setiawan, P. S. Pratama, S. B. Kim and H. K. Kim, "Development and controller design of wheeled-type pipe inspection robot," 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), New Delhi, 2014, pp. 789-795.
[15] 戴邦浩(Bang-Hao Dai). “六軸慣性感測器融合及打滑偵測應用於電動輔助載具, Sensor fusion of six-axis inertial sensors and skid detection for power-assist vehicles”. In: 清華大學動力機械工程學系學位論文 pp. 1-66, 2015.
[16] Y. Du, Q. m. Zhu, S. Ghauri, J. h. Zhai, H. r. Jia and H. Nouri, "Progresses in study of pipeline robot," 2012 Proceedings of International Conference on Modelling, Identification and Control, Wuhan, Hubei, China, 2012, pp. 808-813.
[17] A. Singh, E. Sachdeva, A. Sarkar and K. M. Krishna, "COCrIP: Compliant OmniCrawler in-pipeline robot," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 5587-5593.