研究生: |
曾誠 Cherng Tseng |
---|---|
論文名稱: |
以光鉗構裝細胞組織之平台設計 Platform Design for the Cell Assembly by Optical Tweezers |
指導教授: |
賀陳弘
Hong Hocheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 光鉗 、雷射導引 、微流道 、組織工程 |
外文關鍵詞: | laser tweezers, laser guidance, micro channels, tissue engineering |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在建立血管組織之建構平台,其設計重點放在光鉗、雷射導引以及微流道之整合。微流道內部分為血管內皮細胞建構區域、主流道以及中間流道。光鉗能在空間中移動細胞進行血管建構工作。雷射導引則能限制細胞在光軸方向移動,使細胞從主流道移動至建構區域。
系統運作流程如下。首先,內皮細胞經由注射式幫浦注入微流道內部,根據計算流體力學模擬,決定微流道內部的幾何尺寸,在不影響光鉗搬移細胞的前提下,使得微量的培養液能進入血管建構區域提供細胞養分。其次,細胞經由雷射導引通過中間流道,到達細胞建構區域。之後,光鉗可在中間流道的末端取得細胞,移動細胞至特定位置,進行血管建構工程。
鏡面驅動式光鉗之光路參數初階設計是基於近軸公式,吾人使用光學軟體對此參數進行最佳化。經過最佳化後,光鉗的移動範圍可包括70%的物鏡視野。對於N.A.值1.25的油鏡而言,光鉗工作範圍約為直徑70 ~ 80um的圓形。
The concept of the blood capillary construction system is based on three modules: optical tweezers, laser guidance and the fabrication of micro channels. Inside of micro channels can be divided into three parts, capillary construction area, main channel and sub channels.
The working process of the system is as follows. First, the endothelial cells were stored in a syringe and pumped into main channel. With computational fluid dynamics simulation, the geometry of micro channels was designed to allow sufficient nutrition entering the constructive region so as to keep the cell vitality but would not let the flow disturb the process. Second, the cells were guided into sub channel, lined up and flow through the channel toward construction area by laser guidance. Finally, optical tweezers trapped cells at the end of the sub channel and put them at the proper place to form a piece of blood capillary.
Optical tweezers were driven by tilting the mirror. Parameters calculated from the thin-lens formula were used as initial conditions and then optimized by optics simulation software. After optimization, the working range of the optical tweezers could cover 70% field of view of the microscope objective. For a N.A.=1.25 oil immersion-type microscope objective, the working area is a circle which diameter of 70 ~ 80um
[1] A. Ashkin, (1970) “Acceleration and Trapping of Particle by Radiation Pressure,” Phys. Rev. Lett, Vol. 24, P. 256.
[2] A. Ashkin and J. M. Dziedzic, (1971) “Optical levitation by radiation pressure,” Appl. Phys. Lett., Vol. 19, P. 283.
[3] A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu, (1986) “Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles, Opt. Lett. Vol. 11, P. 288.
[4] M. J. Renn and R. Pastel, (1998) “Particle Manipulation and Surface Patterning by Laser Guidance,” J. Vac. Sci. Technol. B. 16, P3859-3863.
[5] M. J. Renn, R. Pastel, and H. J. Lewandowski, (1999) “Laser Guidance and Trapping of Mesoscale Particles in Hollow-Core Optical Fibers,” Physical Review Letters, Vol. 82, No. 7, P1574-1577.
[6] K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, (1999) “Characterization of Photo Damage to Escherichia Coli in Optical Traps,” Biophysical Journal, Vol. 77, P2856–2863,November.
[7] D. J. Odde, M. J. Renn, (2000) “Laser-Guided Direct Writing of Living Cells,” Biotechnology and Bioengineering, Vol. 67, No. 3, P312-318.
[8] R. A. Flynn, A. L. Birkbeck, M. Gross, M. Ozkan, B. Shao, M. M. Wang, and S. C. Esener, (2002) “Parallel Transport of Biological Cells Using Individually Addressable VCSEL Arrays as Optical Tweezers,” Sensors and Actuators, B87, P239–243.
[9] E. Fallman and O. Axner, (1997) “Design for Fully Steerable Dual-Trap Optical Tweezers,” Applied Optics, Vol. 36, No. 10, P. 2107-2113, April.
[10] E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, (2001) “Computer-Generated Holographic Optical Tweezer Arrays,” Rev. Sci. Instrum., Vol. 72, No. 3, P. 1810-1816.
[11] J. E. Curtis, B. A. Koss, and D. G. Grier, (2002) “Dynamic holographic optical tweezers,” Optics Communications, Vol. 207, P169–175
[12] N. G. Dagalakis, T. LeBrun and J. Lippiatt, (2002) “Micro-Mirror Array Control of Optical Tweezer Trapping Beams, Conference of IEEE-Nano., P177-180.
[13] J. P. Mills, L. Qie, M. Dao, C. T. Lim and S. Suresh, (2005) “Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell with Optical Tweezers,” Optics Express, Vol. 13, No. 10, P3673, May.
[14] J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, (2002) “Components for Integrated Poly(dimethylsiloxane) Microfluidic Systems,” Electrophoresis, 23, P3461–3473.
[15] H. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe (2000) ” Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal of Microelectromechanical Systems, Vol. 9, No. 1, March.
[16] S. Li and S. Chen, (2003) “Polydimethylsioxane Fluidic Interconnects for Microfluidic Systems,” IEEE Trans. on Advanced Packaging, Vol. 26, No. 3, P. 242-247
[17] M. P. Sheetz, Laser tweezers in cell biology, Academic Press, 1998.
[18] 陸懋宏著,「幾何光學」,第五版,課堂講義。
[19] 張博睿,“準焦與散焦雷射攝夾之設計與應用”,國立交通大學電子物理系碩士論文,2001。
[20] B. R. Munson, D. F. Young and T. H. Okiishi, Fundamentals of Fluid Mechanics, John Wiley & Sons, Inc. 2002.
[21] K. Svoboda and S.M. Block, (1994) “Biological Applications Of Optical Forces,” Annual Review Of Biophysics and Biomolecular Structure Vol. 23, P. 247-285.