簡易檢索 / 詳目顯示

研究生: 林煜軒
Lin, Yu-Hsuan
論文名稱: 燃料電池/鋰電池電動車之創新熱管理系統實體建模與仿生演算法最佳化溫度控制
Innovative Thermal Management System Modeling and Bio-inspired Algorithm for Temperature Control Optimization of Fuel Cell/ Lithium Battery Electric Vehicles
指導教授: 李明蒼
Lee, Ming-Tsang
口試委員: 劉耀先
Liu, Yao-Hsien
林洸銓
Lin, Kuang-Chuan
吳建勳
Wu, Chien-Hsun
洪翊軒
Hung, Yi-Hsuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 燃料電池鋰電池粒子群最佳化電動車熱管理系統
外文關鍵詞: Fuel cell, Battery, Particle swarm optimization, Electric vehicle, Thermal management system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文開發一創新智慧型混合熱管理系統(Intelligent Hybrid Thermal Management System, IHTMS)暨最佳化控制,應用於雙電力電動車之燃料電池/鋰電池模組。本研究首先於Matlab/Simulink平台進行實體動態建模後,以仿生演算法之粒子群優化(Particle Swarm Optimization, PSO)開發最佳熱管理控制策略。目標是縮短電動車初始啟動過程中的低效率溫度期,並將質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)和鋰電池溫度保持並穩定在最佳效率區間,以提高電動車的行駛里程和功率輸出。系統建模部分,透過控制導向(Control-Oriented)模型與兩控制體積模組,建構了8個 IHTMS 子系統。其中並建構與設計單鋰電池實驗以得到實體參數導入模型。在熱管理控制部分,以仿生演算PSO控制策略,設定兩輸入為燃料電池和鋰電池溫度;兩輸出為總質量流率(水泵電壓)和流量比例分配(比例閥電壓)。目標函數為實際與最佳操作溫度誤差絕對值之和。另使用4模式規則庫(Rule-Based, RB)控制策略為對照組。此外亦開發使用 PSO 初始條件(initial) 的 RB(PSOi-RB)作為實際應用參考。最後將IHTMS在兩行車型態:WLTC和NEDC測試。結果顯示:在WLTC行車型態中,將PSO和PSOi-RB與RB策略進行比較,PEMFC的最佳溫度上升時間分別減少13.655%和9.505%;鋰電池為8.77% 和 4.385%。在NEDC行車型態,PEMFC的最佳溫度上升時間分別減少8.908%和7.318%,而鋰電池的最佳溫度上升時間分別減少5.226%和3.136%。PEMFC的平均溫度誤差改善分別為19.759%及11.023%;鋰電池平均溫度誤差改善分別為57.027%及3.67%。 NEDC行車型態,PEMFC的平均溫度誤差改善分別為18.879%和9.551%; 鋰電池平均溫度誤差改善分別為29.144%及20.221%。在未來的工作中,IHTMS將整合到混合能源電動車中進行實驗驗證。


    In this study, an innovative Intelligent Hybrid Thermal Management System (IHTMS) was developed and optimized for application in dual-power electric vehicles (EVs), specifically for Proton Exchange Membrane Fuel Cell (PEMFC)/Lithium Battery modules. Initially, physical dynamic modeling was carried out on the Matlab/Simulink platform, followed by the development of optimal thermal management control strategies utilizing Particle Swarm Optimization (PSO), a bio-inspired algorithm. The primary aim of this research was to minimize the duration of low-efficiency temperatures during the initial start-up phase of EVs and to stabilize the temperatures of PEMFCs and lithium batteries within their optimal efficiency ranges, thereby enhancing the driving range and power output of EVs. In terms of system modeling, a control-oriented model and two control volume modules were employed to construct eight IHTMS subsystems. Single lithium battery experiments were conducted to obtain physical parameters for integration into the model. In the thermal management control segment, the bio-inspired PSO control strategy utilized two inputs: the temperatures of the fuel cell and lithium battery; and two outputs: the total mass flow rate (pump voltage) and flow rate distribution ratio (proportional valve voltage). The objective function was defined as the sum of the absolute values of the difference between actual and optimal operating temperatures. Additionally, a four-mode Rule-Based (RB) control strategy was designed as a baseline case. Furthermore, an RB incorporating initial conditions derived from PSO (PSOi-RB) was developed for practical application. Lastly, the IHTMS was tested under two driving patterns: WLTC and NEDC. The results indicate that under the WLTC driving cycle, when comparing PSO and PSOi-RB with RB strategies, the time to reach optimal temperature for the PEMFC decreased by 13.655% and 9.505%, respectively, and for the lithium battery by 8.77% and 4.385%. Under the NEDC driving cycle, the time to reach optimal temperature for the PEMFC decreased by 8.908% and 7.318%, respectively, and for the lithium battery by 5.226% and 3.136%. The improvements in the average temperature errors for the PEMFC were 19.759% and 11.023%; for the lithium battery, they were 57.027% and 3.67%. For the NEDC driving cycle, the improvements in average temperature errors for the PEMFC were 18.879% and 9.551%; for the lithium battery, they were 29.144% and 20.221%. Future work will involve integrating the IHTMS into a hybrid-energy EV for experimental verification.

    摘要 ..................................................... I Abstract ................................................. II 序言 ..................................................... III 目錄 ..................................................... IV 圖目錄 .................................................... VI 表目錄 .................................................... IX 符號表 .................................................... X 第一章 緒論................................................ 1 1.1 前言 .................................................. 1 1.2 研究動機 .............................................. 10 1.3 研究目標 .............................................. 12 第二章 熱動態方程式、系統模擬器與電池實驗系統設計 ............. 13 2.1 創新系統配置 ........................................... 13 2.2 系統動態方程式 ......................................... 18 2.3 單電池參數擷取實驗設計 .................................. 26 2.4燃料電池/鋰電池創新熱管理系統實驗平台 ..................... 30 第三章 燃料電池/鋰電池熱管理與最佳溫度控制策略 ................ 35 3.1 基於規則庫和PSOi-RB控制策略 ............................. 35 3.2 PSO控制策略的開發 ...................................... 37 第四章 模擬與實驗結果及討論 ................................. 43 4.1 參數與行車型態設定 ..................................... 43 4.2 行車型態動態模擬 ....................................... 52 第五章 結論與未來研究方向 ................................... 73 5.1 結論 .................................................. 73 5.2 未來研究方向 ........................................... 75 參考文獻 ................................................... 76

    [1] Y. Nassar, K. Rateb and S. Alsadi, "Air Pollution Sources in Libya, " J Ecol Environ. vol. 6, no. 1, pp.63-79, 2017.
    [2] A. Desreveaux, A. Bouscayrol, R. Trigui, E. Hittinger, E. Castex and G.M. Sirbu, " Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles, Energy," vol. 268, p.119531, 2023.
    [3] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, "A review on the key issues for lithium-ion battery management in electric vehicles," J. Power Sources, vol. 10, pp.246-267, 2018.
    [4] A. Pramuanjaroenkij, S. Kakaç, "The fuel cell electric vehicles: The highlight review, " Int. J. Hydrog. Energy, vol. 48, pp.9401-9425, 2023.
    [5] Y. F. Nassar, S. Y. Alsadi, H. J. El-Khozondar, M. S. Ismail, M. Al-Maghalseh, T. Khatib, J. A. Sa’ed, M. H. Mushtaha and T. Djerafi, "Design of an isolated renewable hybrid energy system: a case study," Mater Renew Sustain Energy, vol. 11, pp.225-240, 2022.
    [6] J. Yong, V. Ramachandaramurthya, K. Tana and N. Mithulananthanb, "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renew. Sust. Energ. Rev., vol. 49, pp.365-385, 2015.
    [7] J. Teter(2020). International Energy Agency Electric Vehicles Analysis, IEA, Paris.
    [8] F. Maisel, C. Neef, F. M. Weidemann and N. Nissen, "A forecast on future raw material demand and recycling potential of lithium-ion batteries in electric vehicles," Resour Conserv Recycl, vol. 192, p.106920, 2023.
    [9] M. A. Aminudin, S. K. Kamarudin, B. H. Lim and E. H. Majilan, M. S. Masdar, N. Shaari, "An overview: Current progress on hydrogen fuel cell vehicles, Int. J. Hydrog. Energy," vol. 48, pp.4371-4388, 2023.
    [10] M. İnci, M. Büyük, M. Demir and G. İlbey, "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renew. Sust. Energ. Rev., vol. 137 , p.110648, 2021.
    [11] S. Ko, J. Shin," Projection of fuel cell electric vehicle demand reflecting the feedback effects between market conditions and market share affected by spatial factors," Energy Policy, vol. 173, p.113385, 2023.
    [12] M. Waseem, M. Amir, G. Lakshmi, S. Harivardhagini and M. Ahmad," Fuel Cell-based Hybrid Electric Vehicles: An Integrated Review of Current Status, Key Challenges, Recommended Policies, and Future Prospects," Green Energy Technol., vol. 2, no. 2, p.100121, 2023.
    [13] Y. Manoharan, S. E. Hosseini, B. Butler, H. Alzhahrani,B. T. F. Senior, T. Ashuri and J. Krohn, "Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect," applied sciences, vol. 9, no. 11, p.2296, 2019.
    [14] Y. Hamesa, K. Kayaa, E. Baltacioglub, A. Turksoya, "Analysis of the Control Strategies for Fuel Saving in the Hydrogen Fuel Cell Vehicles," Hydrogen Eergy, vol. 43, p.10810, 2018.
    [15] S. F. Lee, C. W. Hong, "Multi-scale Design Simulation of a Novel Intermediate-Temperature Micro Solid Oxide Fuel Cell Stack System," Int. J. of Hydrogen Energy, vol. 35, pp.1330-1338, 2010.
    [16] C. H. Cheng, P. Y. Chen and C. W. Hong, "Atomistic Analysis of Hydration and Thermal Effects on Proton Dynamics in the Nafion Membrane," Journal of The Electrochemical Society, vol. 155, No. 4, pp.435-442, 2008.
    [17] C. H. Cheng, K. Fei and C. W. Hong, "Computer Simulation of Hydrogen Proton Exchange Membrane and Direct Methanol Fuel Cells," Computers and Chemical Engineering, vol. 31, pp.247-257, 2007.
    [18] E. Özbek, G. Yalin, S. Ekici, T. Karakoc, "Evaluation of design methodology, limitations, and iterations of a hydrogen fuelled hybrid fuel cell mini UAV," Energy. vol. 213, p.118757, 2023.
    [19] E. Ozbek, G. Yalin, M. Karaoglan, S. Ekici, C. Colpan and T. Karakoc, "Architecture design and performance analysis of a hybrid hydrogen fuel cell system for unmanned aerial vehicle," Int. J. Hydrog. Energy. vol. 46, pp.16453-16464, 2022.
    [20] Y. Miao, P. Hynan, A. von Jouanne, and A. Yokochi, "Current Li-ion battery technologies in electric vehicles and opportunities for advancements," Energies, vol. 12, no. 6, p.1074, 2019.
    [21] W. J. Cao, C. R. Zhao, Y. W. Wang, T. Dong and F. M. Jiang, "Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow," Int. J. Heat Mass Transf., vol. 138, pp.1178-1187, 2019.
    [22] D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang and J. Wang, "A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures, " Appl. Sci., vol. 9, p.2483, 2019.
    [23] J. B. Piotr, "Identification of the Wear Margin of a Pipeline–Machine Subsystem," Appl. Sci., vol. 10, pp.3977, 2020.
    [24] Z. Qian, Y. M. Li, Z. H. Rao, "Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling," Energy Convers. Manag., vol. 126, pp.622-631, 2016.
    [25] S. Wang, K. Rafiz, J. Liu, Y. Jin, J. Y. Lin, "Effects of lithium dendrites on thermal runaway and gassing of LiFePO4 batteries," Sustain. Energy Fuels., vol. 4, pp.2342-2351, 2020.
    [26] K. Ogura, M. Kolhe, "4 - Battery technologies for electric vehicles," Electric Vehicles: Prospects and Challenges, pp.139-167, 2017.
    [27] D. A. Corrigan, A. Masias, "Batteries for electric and hybrid vehicles. In Linden’s Handbook of Batteries, 4th ed. ," Reddy, McGraw-Hill, New York, USA, 2011.
    [28] A. Maiorino, C. Cilenti, F. Petruzziello and C. Aprea, "A review on thermal management of battery packs for electric vehicles," Appl. Therm. Eng., vol. 238, p.122035, 2024.
    [29] H. Alghamdi, M. Rosdi, A. Mukhtar, A. Yasir and A. Alviz-Meza, "Controlling thermal runaway by simultaneous use of thermoelectric module and phase change material in the lithium-ion batteries of electric vehicles," Case Stud. Therm., Eng., vol. 52, p.103697, 2024.
    [30] X. Liu, L. Yao, C. Su, X. Xiong and Y. Wang, "A hybrid battery thermal management system coupling with PCM and optimized thermoelectric cooling for high-rate discharge condition," Case Stud. Therm. Eng., vol. 49, p.103269, 2023.
    [31] X. Yin, J. Fang, A. Wang, Y. Song, F. Cao and X. Wang, "A novel CO2 thermal management system with battery two-phase (evaporative) cooling for electric vehicles, " Results in Eng. vol. 16, p.100735, 2022.
    [32] H. Hao, R. Mo, S. Kang and Z. Wu, "Effects of temperature, inlet gas pressure and humidity on PEM water contents and current density distribution," Results in Eng., vol. 14, p.101411, 2023.
    [33] A. Kumar Thakur, R. Sathyamurthy, R. Velraj, R. Saidur, A.K. Pandey, Z Ma, P. Singh, S. Kanti Hazra, S. Wafa Sharshir, R. Prabakaran, S. Chul Kim, S. Panchal and H. Muhammad Ali, "A state-of-the art review on advancing battery thermal management systems for fast-charging," Appl. Therm. Eng., vol. 226, p.120303, 2023.
    [34] X. Lai, L. Zhou, Z. Zhu, Y. Zheng, T. Sun and K. Shen, "Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors," Energy, vol. 274, p.127408, 2023.
    [35] M. Zunita, A. Raizki, R. Aditya and I Gede Wenten, "Proton exchange polyionic liquid-based membrane fuel cell applications," Results in Eng., vol. 16, p.100653, 2023.
    [36] L. Wang, Z. Quan, Y. Zhao, M. Yang and H. Jing, "Heat transfer process analysis and performance research of micro heat pipe array applied for the thermal management of proton exchange membrane fuel cells," Appl. Therm. Eng., vol. 219, p.119531, 2023.
    [37] M. Yang, Z. Quan, Y. Zhao, L. Wang, Z. Liu and S. Tang, "Experimental and numerical study on thermal management of air-cooled proton exchange membrane fuel cell stack with micro heat pipe arrays," Energy Convers. Manag., vol. 275, p.116478, 2023.
    [38] M. Noponen, T. Mennola, M. Mikkola, T. Hottinen and P. Lund, "Measurement of current distribution in a free-breathing PEMFC," J. Power Sources, vol. 106, pp.304-312, 2022.
    [39] J. Kim, J. Oh, H. Lee, "Review on battery thermal management system for electric vehicles," Appl. Therm. Eng., vol. 149, pp.192-212, 2019.
    [40] A. A. Hakeem, D. Solyali, "Empirical Thermal Performance Investigation of a Compact Lithium Ion Battery Module under Forced Convection Cooling," Appl. Sci., vol. 10, p.3732, 2020.
    [41] M. Chen, S. Zhang, G. Wang, J. Weng, D. Ouyang, X. Wu, L. Zhao, J. Wang, " Experimental Analysis on the Thermal Management of Lithium-Ion Batteries Based on Phase Change Materials," Appl. Sci., vol. 10, p.7354, 2020.
    [42] Y. H. Hung, T. P. Teng and T. C. Teng, "Assessment of heat dissipation performance for nanofluid," Appl. Therm. Eng., vol. 32, pp.132-140, 2011.
    [43] Y. H. Hung, H. J. Gu, "Multiwalled Carbon Nanotube Nanofluids Used for Heat Dissipation in Hybrid Green Energy Systems," J. Nanomater., vol. 2014, 2014.
    [44] H. J. Xu, J. X. Wang, Y. Z. Li, Y. J. Bi and L. J. Gao," A Thermoelectric-Heat-Pump Employed Active Control Strategy for the Dynamic Cooling Ability Distribution of Liquid Cooling System for the Space Station’s Main Power-Cell-Arrays, "Multimed. Tools. Appl., vol. 21, p.578, 2019.
    [45] L. Luo, Q. Jian, B. Huang, Z. Huang, J. Zhao and S. Cao, "Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack," Renew. Energ., vol. 143, 1067-1078, 2019.
    [46] H. S. Bargal, M. M. Souby, A. A. Abdelkareem, M. Sayed, Q. Tao, M. Chan, Y. Wang, " Experimental investigation of the thermal performance of a radiator using various nanofluids for automotive PEMFC applications," Int. J. Energy Res., vol. 45, 6831-6849, 2020.
    [47] Y. H. Gan, J. Q. Wang, J. L. Liang, Z. H. Huang, M. L. Hu, "Development of thermal equivalent circuit model of heat pipe-based thermal management system for a battery module with cylindrical cells, "Appl. Ther. Eng., vol. 164, p.114523, 2020.
    [48] S. Kim, H. Jeong, H. Lee, "Cold-start performance investigation of fuel cell electric vehicles with heat pump-assisted thermal management systems," Energy, vol. 232, p.121001, 2021.
    [49] Y. H. Hung, W. P. Wang, Y. C. Hsu, T. P. Teng, "Performance evaluation of an air-cooled heat exchange system for hybrid nanofluids," Exp. Ther. Fluid Sci., vol. 81, pp. 43-55, 2017.
    [50] H. Löbberding, S. Wessel, C. Offermanns, M. Kehrer, J. Rother, H. Heimes and A. Kampker, "From Cell to Battery System in BEVs: Analysis of System Packing Efficiency and Cell Types," World Electr. Veh. J., vol. 11, no. 4, p.77, 2020.
    [51] K. Kant, R. Pitchumani, "Analysis and design of battery thermal management under extreme fast charging and discharging," J Energy Storage, vol. 60, p.106501, 2023.
    [52] T. Shelly, J. Weibel, D. Ziviani and E. Groll, "Comparative analysis of battery electric vehicle thermal management systems under long-range drive cycles," Appl. Therm. Eng., vol. 198, p.117506, 2021.
    [53] D. Karimi, H. Behi, J. Van Mierlo and M. Berecibar, "Experimental and numerical analysis of holistic active and passive thermal management systems for electric vehicles: Fast charge and discharge applications," Results in Eng., vol. 15, p.100486, 2022.
    [54] Y. H. Hung, P. H. Lin, C. H. Wu, and C. W. Hong, "Real-Time Dynamic Modeling of Hydrogen PEMFCs," J Franklin Inst, vol. 345, no. 2, pp.182-203, 2008.
    [55] Y. H. Hung, C. W. Hong, "Bond Graph Modelling of Fuel Cell and Engine Hybrid Electric Scooters," Int. J. Vehicle Des., vol. 45, no. 4, pp.533-541, 2007.
    [56] P. H. Lin, C. W. Hong, "On the Start-up Transient Simulation of a Turbo Fuel Cell System," J. Power Sources, vol. 160, no. 2, pp.1230-1241, 2006.
    [57] A. Baroutaji, A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, M. Abdelkareem and A. Olabi, "Advancements and prospects of thermal management and waste heat recovery of PEMFC," Int. J. Thermofluids, vol. 9, p.100064, 2021.
    [58] W. Huang, Q. Jian, S. Feng and Z. Huang, "A hybrid optimization strategy of electrical efficiency about cooling PEMFC combined with ultra-thin vapor chambers," Energy Convers. Manag., vol. 254, p.115301, 2022.
    [59] Y. Hung, Y. Lin, C. Wu and Y. Chen, "Mechatronics design and experimental verification of an electric-vehicle-based hybrid thermal management system," Adv. Mech. Eng., vol. 8, pp.1-9, 2016.
    [60] Y. Lin, L. Liu, Y. Hung and C. Chang, "A Real-Time Simulator for an Innovative Hybrid Thermal Management System Based on Experimental Verification," Appl. sci., vol. 11, no. 24, p.11729, 2021.
    [61] H. Behi, D. Karimi, T. Kalogiannis, J. He, M. Patil, J. Muller, A. Haider, J. Mierlo and M. Berecibar, "Advanced hybrid thermal management system for LTO battery module under fast charging," Case Stud. Therm. Eng., vol. 33, p.101938, 2022.
    [62] Y. H. Hung, Y. F. Lue, H. J. Gu, ''Development of a Thermal Management System for Energy Sources of an Electric Vehicle,'' IEEE/ASME Transaction on Mechatronics, vol. 21, no. 1, pp.402-411, 2015.
    [63] H. Behi, M. Behi, D. Karial, J. Jagemont, M. Ghanbarpour, M. Behnia, M. Berecibar, J. V. Mierlo, ''Heat pipe air-cooled thermal management system for lithium-ion batteries: High power applications, ''Appl. Therm. Eng., vol. 183, p.16240, 2020.
    [64] Y. H. Hung, Y. M. Tung, C. H. Chang," Optimal Control of Integrated Energy Management/Mode Switch Timing In a Three-power-source Hybrid Powertrain," Applied Energy, vol. 173, pp.184-196, 2016.
    [65] C. T. Chung, Y. H. Hung, ''Performance and Energy Management of a Novel Full Hybrid Electric Powertrain System,'' Energy, vol. 89, pp.626-636, 2015.
    [66] Y. H. Hung, C. H. Wu, ''A combined Optimal Sizing and Energy Management Approach for Hybrid In-wheel Motors of EVs,'' Applied Energy, vol. 139, pp.260-271, 2015.
    [67] S. Mohajer, J. Sabatier, P. Lanusse, ''O. Cois, Electro-Thermal and Aging Lithium-Ion Cell Modelling with Application to Optimal Battery Charging, ''Appl. Sci., vol. 10, p.4038, 20202.
    [68] D. Ouyang, M. Chen, Q. Huang, J. Weng, Z. Wang, J. Wang, ''A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures, '' Appl. Sci., vol. 9, p.2483, 2019.
    [69] J. B. Piotr, ''Identification of the Wear Margin of a Pipeline–Machine Subsystem, ''Appl. Sci., vol. 10, p.3977, 2020.
    [70] Z. Qian, Y. M. Li, Z. H. Rao, ''Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling, ''Energy Convers. Manag., vol. 126, pp.622–631, 2016.
    [71] M. Mahmoud Hamed, A. El-Tayeb, I. Moukhtar, A. Z. El Dein and E. H. Abdelhameed, ''A review on recent key technologies of lithium-ion battery thermal management: External cooling systems, ''Results in Eng., vol. 16, p.100703, 2022.
    [72] L. Deng, S. Li, X. Tang, K. Yang, X. Lin, ''Battery thermal- and cabin comfort-aware collaborative energy management for plug-in fuel cell electric vehicles based on the soft actor-critic algorithm, Energy Convers. Manag., ''vol. 283, p.116889, 2023.
    [73] L. S. Sundar, Kotturu V. V. Chandra Mouli, ''Experimental analysis and Levenberg-Marquardt artificial neural network predictions of heat transfer, friction factor, and efficiency of thermosyphon flat plate collector with MgO/water nanofluids, ''Int. J. Therm. Sci., vol. 194, p.108555, 2023.
    [74] L. He, H. Jing, Y. Zhang, P. Li and Z. Gu, ''Review of thermal management system for battery electric vehicle, ''J Energy Storage, vol. 59, p.106443, 2023.
    [75] V. Atasoy, A. Suzer, S. Ekici, ''A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications, ''J Energy Resour Technol., Vol. 144, no. 8, p.13, 2022.
    [76] K. Kayaalp, S. Metlek, S. Ekici and Y. Şöhret, ''Developing a model for prediction of the combustion performance and emissions of a turboprop engine using the long short-term memory method, ''fuel., vol.302, p.121202, 2023.
    [77] A. Abuelrub, B. Awwad, ''An improved binary African vultures optimization approach to solve the UC problem for power systems, ''Results in Eng., vol. 19, p. 101354, 2023.
    [78] A. Fathy, ''Bald eagle search optimizer-based energy management strategy for microgrid with renewable sources and electric vehicles,'' Appl. Energy, vol. 334, p.120688, 2023.
    [79] J. Li, Y. Li, T. Yu, ''Distributed deep reinforcement learning-based multi-objective integrated heat management method for water-cooling proton exchange membrane fuel cell, Case Stud,'' Therm. Eng., vol. 27, p.101284, 2021.
    [80] L. Tong, C. Yuan, T. Yang, Y. Yuan, R. Chahine and J. Xiao, ''Thermal management of metal hydride hydrogen storage tank coupled with proton exchange membrane fuel cells,'' Case Stud. Therm. Eng., vol. 43, p.102812, 2023.
    [81] Y. Xu, G. Cui, Y. Xiao, G. Zhang and Q. Yang, ''An enhanced heuristic algorithm with coordination evolution strategy for waste-mass minimization and heat integration network design,'' Case Stud. Therm. Eng., vol. 39, p.102458, 2022.
    [82] H. Duan, L. Yang, Y. Xiao, X. Huang and G. Cui, ''A heuristic algorithm with a dynamic generation strategy for optimizing energy systems,'' Appl. Therm. Eng., vol. 236, p.122833, 2024.
    [83] Q. Wang, X. Lv and A. Zeman, ''Optimization of a multi-energy microgrid in the presence of energy storage and conversion devices by using an improved gray wolf algorithm,'' Appl. Therm. Eng., vol. 234, p.121141, 2023.
    [84] S. Xing, J. Zhang, ''Chiller–pump system optimisation method for minimum energy operation based on multi-objective evolutionary algorithm,'' Appl. Therm. Eng., vol. 208, p.118150, 2022.
    [85] R. Almodfer, M. E. Zayed, M. A. Elaziz, M. M. Aboelmaaref, M. Mudhsh and A. H. Elsheikh, ''Modeling of a solar-powered thermoelectric air-conditioning system using a random vector functional link network integrated with jellyfish search algorithm,'' Case Stud. Therm. Eng., vol. 31, p.101797, 2022.
    [86] M. Y. Nassar, M. L. Shaltout and H. A. Hegazi, ''Multi-objective optimum energy management strategies for parallel hybrid electric vehicles: A comparative study,'' Energy Convers. Manag., vol. 277, p.116683, 2023.
    [87] H. Cheng, S. Jung, Y. B. Kim, ''Battery thermal management system optimization using Deep reinforced learning algorithm,'' Appl. Therm. Eng., vol. 236, p.121759, 2024.
    [88] Y. Wang, Y. Zhang, C. Zhang, J. Zhou, D. Hu, F. Yi, Z. Fan and T. Zeng, ''Genetic algorithm-based fuzzy optimization of energy management strategy for fuel cell vehicles considering driving cycles recognition,'' Energy, vol. 263, p.126112, 2023.
    [89] R. Eberhart, J. Kennedy, ''A new optimizer using particle swarm theory, Proceedings of the International Symposium on Micro Machine and Human Science,'' IEEE, pp.39-43, 1995.
    [90] M. R. Bonyadi, Z. Michalewicz, "Particle Swarm Optimization for Single Objective Continuous Space Problems: a Review," Evol Comput, vol. 25, pp.1-54, 2017.
    [91] S. Chen, Y. Hung, C. Wu and S. Huang, "Optimal energy management of a hybrid electric powertrain system using improved particle swarm optimization," Appl. Energy., vol. 160, pp.132-145, 2015.
    [92] S. Chen, C. Wu, Y. Hung and C. Chung, ''Optimal strategies of energy management integrated with transmission control for a hybrid electric vehicle using dynamic particle swarm optimization,'' Energy., vol. 160, pp.154-170, 2018.
    [93] H. Dingcheng, A. Sayed M. Metwally, S. Ali, M. Sillanpaa, W. Yassen and B. Sobhani, ''Sustainable and environmentally-friendly multi-generation system of power, cooling, and hydrogen; Multi-objective optimization using particle swarm algorithm,'' Appl. Therm. Eng., vol. 225, pp.120093, 2023.
    [94] Y. Zou, G. Yu, K. Luo, H. Wang, M. Guo and J. Zheng, ''Improved Particle Swarm Optimization-based Thermal Power-energy Storage Combined AGC Frequency Regulation Control,'' IEEE IICSPI, p.20402924, 2020.
    [95] J. Zhang, H. Cho, P. J. Mago, H. Zhang and F. Yang, ''Multi-Objective Particle Swarm Optimization (MOPSO) for a Distributed Energy System Integrated with Energy Storage,'' Int J Therm Sci., vol. 28, no. 6, pp.1221-1235, 2019.
    [96] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, M. O’Keefe, S. Sprik and K. Wipke, ''ADVISOR: a systems analysis tool for advanced vehicle modeling,'' J. Power Sources., vol. 110, no. 2, pp.255-266, 2002.

    QR CODE