簡易檢索 / 詳目顯示

研究生: 丁其延
Ding, Chi-Yan
論文名稱: 開發胺類複合吸收液之CO2捕獲製程
Development of CO2 Capture Process for Amine Composite Absorbent
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員: 蔣孝澈
Chiang, Shiaw-Tseh
顧洋
Ku, Young
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 二氧化碳捕獲胺類吸收液超重力旋轉床
外文關鍵詞: Capture, absorbent, rotating-packed-bed
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因工業蓬勃發展下,溫室氣體大量排放至大氣中,造成全球氣候暖化、地球平均溫度上升,其中以CO2排放量最高,為了減緩溫室效應,降低大氣中CO2濃度為首要目標,各國致力於發展CO2捕獲、封存及再利用(CO2 Capture, Storage and Utilization, CCSU)技術,現有技術中,化學吸收法是目前最廣泛使用的捕獲方法,已有成熟的商業化製程,然而化學吸收法面臨的主要問題為胺類吸收液需藉由高溫進行再生反應,再生能耗高,因此本研究將著重於開發酸性和鹼性配方,搭配超重力旋轉床技術,提升捕獲量和降低再生能耗。
    Piperazine(PZ)對於CO2具有高吸收速率,但由於本身無法與水完全互溶,在室溫下只有15%的溶解度,故為了增加吸收液中胺含量使用混摻溶劑,在吸收液中加入胺基酸鹽(NaADS),NaADS及PZ皆和CO2有良好的反應性、高熱穩定性、低腐蝕力等優點,將兩者進行混摻可成為具高捕獲量及適合長時間操作之吸收液,而非水溶劑DEG具有極低的蒸氣壓及比水溶劑還低的比熱,添加DEG取代部份水溶劑可於再生時減少水溶劑因蒸發而造成的損失及降低再生所需能耗。
    吸收液大多具有高黏度,使用傳統吸收塔進行操作時會有較大的質傳阻力,本實驗室使用超重力旋轉床(RPB)技術取代傳統吸收塔,RPB有較大的重力場,可以處理黏度較高的液體,達到增加質傳係數KGa的目的,使吸收液能有效捕獲CO2,並且在相同捕獲效率下,所需的體積只有傳統吸收塔的三分之一,大幅減少設備成本。
    吸收液中添加酸性或鹼性添加劑可有效幫助捕獲CO2,於吸收端,鹼性環境能提高吸收液對於CO2的吸收速率,加速Bicarbonate和Carbamate的生成,而於再生端,酸性環境有助於Bicarbonate (HCO3-)、Carbamate (R2NCO2-)的分解,加快再生速率。本研究將酸鹼配方分為非均相配方和均相配方,分別探討其影響。

    非均相配方為使用含有固體之吸收液配方,於吸收塔使用鹼性填充固體,再生塔使用酸性填充固體,由於固體會固定在各RPB的Wire Mesh中,故吸收端和再生端兩者不會互相干擾,可同時加快吸收速率和再生速率。經實驗測試,FeOOH不僅在再生端可有效提供質子,加速CO2的再生,由於其Acid-Base Bifunctional特性,在吸收端亦可提高吸收液吸收CO2的效率。
    相較於非均相配方,均相配方為使用含酸性液體之吸收劑配方,酸性液體可均勻分散在吸收液中,可大幅降低質傳阻力。本實驗使用H2SO4作為酸性液體,搭配RPB進行操作。雖然酸性環境會阻礙吸收液捕捉CO2,但對於再生端,比起酸性固體,酸性液體能更大幅度的提高再生速率,進而降低再生能耗。此外,亦測試了相對於H2SO4,對於環境更加友善的酸性液體,如:乳酸、醋酸和草酸,但從實驗結果可觀察到添加2% H2SO4的吸收液具有最低的再生能耗。


    Due to the booming industry, greenhouse gases are emitted into the atmosphere, causing global warming and rising average temperature of the earth. Among them, CO2 emissions are the highest. In order to reduce the greenhouse effect, reducing the concentration of CO2 in the atmosphere is the primary goal. Countries are committed to developing CO2 capture, storage and utilization (CCSU) technology. In the prior art, chemical absorption is currently the most widely used capture method, because of its mature commercial processes. But there are some problems by chemical absorption, the main one is the amine absorbent needs to be regenerated by high temperature, and the energy consumption for regeneration is high. Therefore, this study will focus on the development of catalysts, coupled with the rotating packed bed technology, which can reduce the regeneration energy consumption.
    Both the amino acid salt and Piperazine (PZ) have the advantages of good reactivity with CO2, high thermal stability, low corrosive power, etc. Therefore, both of them is considered to be a high capture amount and an absorbent suitable for long-term operation. The non-aqueous solvent DEG has a very low vapor pressure and a specific heat lower than that of the water solvent. It is considered that the addition of DEG to replace part of the water solvent can reduce the loss of water solvent due to evaporation and reduce the energy consumption for regeneration. Replacing the traditional absorption tower with the laboratory developed rotating packed bed technology to reduce the volume of the equipment and increase the mass transfer coefficient KGa, so that the absorbent can capture CO2 more effectively.
    The addition of acidic and alkaline formulations to the absorbent aids in the capture of CO2. At the regeneration, the acidic formulation aids in the decomposition of Bicarbonate (HCO3-), Carbamate (R2NCO2-) and accelerates the rate of regeneration. At the absorption, the alkaline formulation increases the absorption rate of CO2 by the absorbent and accelerates the synthesis of Bicarbonate and Carbamate. In this study, the acid-base formula was divided into a homogeneous formula and a heterogeneous formula to investigate its effects.
    The heterogeneous formula uses a solid formula. At the regeneration use acid solid and at the absorption use base solid. Since the solid is fixed in the wire mesh of each RPB, the absorption and the regeneration do not interfere with each other. So can accelerate absorption rate and regeneration rate at the same time. After test, FeOOH can effectively provide protons and accelerate the regeneration of CO2. Due to its Acid-Base Bifunctional characteristics, the absorption efficiency of CO2 can also be improved at the absorption .
    Compared to the heterogeneous formulation, the homogeneous formulation can be evenly dispersed in the absorbent, which can greatly reduce the mass transfer resistance. In this experiment, H2SO4 was used as acid liquid , and the rotating packed bed technology was used. Although the acidic environment hindered the absorption of CO2 by the absorbent, acid liquid can increase the regeneration rate more greatly than the solid formulation, and thus reduce the regeneration energy consumption. In addition, acidic liquids such as lactic acid, acetic acid and oxalic acid, which are more environmentally friendly than H2SO4, have been tested. But it has been observed from the experimental results that the add 2% H2SO4 has the lowest regeneration energy consumption.

    摘要 2 目錄 6 圖目錄 8 表目錄 10 第一章 緒論 11 1-1. 前言 11 1-2. CO2捕獲技術 13 1-3. 化學吸收法吸收液 14 1.3-1. 胺類吸收液 14 1-3-2. 胺基酸鹽吸收液 17 1-3-3. 非水溶劑 19 1-4. 超重力旋轉床 20 1-5. 酸、鹼性效應 22 第二章 文獻回顧與研究動機 23 2-1. 文獻回顧 23 2-2. 研究動機 25 第三章 實驗方法 26 3-1. 實驗裝置及實驗步驟 26 3-1-1. 批次CO2吸收實驗 26 3-1-2. 批次CO2再生實驗 27 3-1-3. 超重力旋轉床CO2捕獲實驗 28 3-1-4. 超重力旋轉床CO2再生實驗 30 3-1-5. 超重力旋轉床串聯捕獲和再生CO2實驗 31 3-2. 實驗儀器 33 3-3. 實驗藥品及氣體 34 3-4. 數據處理 35 第四章 實驗結果 36 4-1. 酸性均相配方 37 4-1-1. 添加H2SO4於批次反應器實驗 37 4-1-2. 添加酸性添加劑於RPB製程 39 4-1-3. 添加硫酸對於腐蝕性影響 44 4-1-4. 添加硫酸對於鹼性吸收液影響 45 4-2. 酸性非均相配方 49 4-3. 鹼性非均相配方 55 第五章 結論 59 第六章 參考文獻 61

    [1] U. NATIONS. (2019, Jul. 8). The Paris Agreement [Online]. Available: https://www.esrl.noaa.gov/gmd/ccgg/trends/full.html
    [2] 行政院環境保護署. (2019, Jul. 1). 溫室氣體減量及管理法 [Online]. Available: http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=O0020098
    [3] G. T. Rochelle, "Amine Scrubbing for CO2 Capture," Science, vol. 325, pp. 1652-1654, Sep. 2009.
    [4] R. Idem, M. Wilson, P. Tontiwachwuthikul, A. Chakma, A. Veawab, A. Aroonwilas et al., "Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration," Industrial & Engineering Chemistry Research, vol. 45, pp. 2414-2420, Apr. 2006.
    [5] M. Caplow, "Kinetics of Carbamate Formation and Breakdown," Journal of the American Chemical Society, vol. 90, pp. 6795-6803, May. 1968.
    [6] P. Danckwerts, "The Reaction of CO2 with Ethanolamines," Chemical Engineering Science, vol. 34, pp. 443-446, Oct. 1979.
    [7] S. A. Freeman, R. Dugas, D. H. Van Wagener, T. Nguyen, and G. T. Rochelle, "Carbon Dioxide Capture with Concentrated, Aqueous Piperazine," International Journal of Greenhouse Gas Control, vol. 4, pp. 119-124, Mar. 2010.
    [8] J. T. Cullinane, "Thermodynamics and Kinetics of Aqueous Piperazine with Potassium Carbonate for Carbon Dioxide Absorption," Ph.D. dissertation, Dept. CH. Eng., Texas Univ., Austin, 2005.
    [9] A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, and R. Gupta, "Post-Combustion CO2 Capture Using Solid Sorbents: A Review," Industrial & Engineering Chemistry Research, vol. 51, pp. 1438-1463, Feb. 2012.
    [10] S. P. Yan, M. X. Fang, W. F. Zhang, S. Y. Wang, Z. K. Xu, Z. Y. Luo, et al., "Experimental Study on the Separation of CO2 from Flue Gas Using Hollow Fiber Membrane Contactors without Wetting," Fuel Processing Technology, vol. 88, pp. 501-511, May. 2007.
    [11] J. van Holst, S. R. A. Kersten, and K. J. A. Hogendoorn, "Physiochemical Properties of Several Aqueous Potassium Amino Acid Salts," Journal of Chemical and Engineering Data, vol. 53, pp. 1286-1291, Jun. 2008.
    [12] E. Sanchez-Fernandez, F. D. Mercader, K. Misiak, L. van der Ham, M. Linders, and E. Goetheer, "New Process Concepts for CO2 Capture Based on Precipitating Amino Acids," Energy Procedia, vol. 37, pp. 1160-1171, Aug. 2013.
    [13] M. E. Majchrowicz, "Amino Acid Salt Solutions for Carbon Dioxide Capture," Ph.D. Dissertation, Dept. CH. Eng., Twente Univ., Enschede, Netherlands, 2014.
    [14] P. Kumar, J. Hogendoorn, P. Feron, and G. Versteeg, "Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids," Industrial & Engineering Chemistry Research, vol. 42, pp. 2832-2840, May. 2003.
    [15] P. Kumar, J. Hogendoorn, S. Timmer, P. Feron, and G. Versteeg, "Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 2. Experimental VLE Data and Model," Industrial & Engineering Chemistry Research, vol. 42, pp. 2841-2852, May. 2003.
    [16] S. Yan, Q. He, S. Zhao, Y. Wang, and P. Ai, "Biogas Upgrading by CO2 removal with a Highly Selective Natural Amino Acid Salt in Gas–Liquid Membrane Contactor," Chemical Engineering and Processing: Process Intensification, vol. 85, pp. 125-135, Nov. 2014.
    [17] S. Yan, Q. He, S. Zhao, H. Zhai, M. Cao, and P. Ai, "CO2 Removal from Biogas by using Green Amino Acid Salts: Performance Evaluation," Fuel Processing Technology, vol. 129, pp. 203-212, Jan. 2015.
    [18] U. E. Aronu, H. F. Svendsen, and K. A. Hoff, "Investigation of Amine Amino Acid Salts for Carbon Dioxide Absorption," International Journal of Greenhouse Gas Control, vol. 4, pp. 771-775, Sep. 2010.
    [19] 陳顥,"以胺基酸鹽吸收劑配方捕獲燃煤電廠排氣中之二氧化碳", 國立清華大學化學工程研究所碩士論文, 2016.
    [20] 蔡東哲,"開發非水溶劑與胺基酸混搭醇胺類之配方", 國立清華大學化學工程研究所碩士論文, 2016.
    [21] C. Ramshaw and R. H. Mallinson, "Mass Transfer Process," U.S. Patent 4 283 255, Aug. 11, 1981.
    [22] M. S. Jassim, G. Rochelle, D. Eimer, and C. Ramshaw, "Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed," Industrial & Engineering Chemistry Research, vol. 46, pp. 2823-2833, Apr. 2007.
    [23] C. C. Lin, W. T. Liu, and C. S. Tan, "Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed," Industrial & Engineering Chemistry Research, vol. 42, pp. 2381-2386, May. 2003.
    [24] H.-H. Cheng and C.-S. Tan, "Reduction of CO2 Concentration in a Zinc/Air Battery by Absorption in a Rotating Packed Bed," Journal of Power Sources, vol. 162, pp. 1431-1436, Nov. 2006.
    [25] C.-C. Lin and W.-T. Liu, "Removal of an Undesired Component froma Valuable Product Using a Rotating Packed Bed," Journal of Industrial and Engineering Chemistry, vol. 12, pp. 455-459, May. 2006.
    [26] M. Keyvani and N. C. Gardner, "Operating Characteristics of Rotating Beds," Case Western Reserve Univ., Cleveland, OH (United States), DOE/PC/79924-T3, Dec. 31, 1988.
    [27] C.-C. Lin and W.-T. Liu, "Mass Transfer Characteristics of a High-Voidage Rotating Packed Bed," Journal of Industrial and Engineering Chemistry, vol. 13, pp. 71-78, Oct. 2007.
    [28] R. Fowler, K. Gerdes, and H. Nygaard, "A Commercial-Scale Demonstration of Higee for Bulk CO Removal and Gas Dehydration," in Offshore Technology Conference, Houston, Texas, 1989.
    [29] P. Singh, W. P. M. van Swaaij, and D. W. Brilman, "Kinetics Study of Carbon Dioxide Absorption in Aqueous Solutions of 1, 6-Hexamethyldiamine (HMDA) and 1, 6-Hexamethyldiamine, N, Ndimethyl (HMDA, N, N)," Chemical Engineering Science, vol. 66, pp. 4521-4532, Oct. 2011.
    [30] J.-F. Chen, Y.-H. Wang, F. Guo, X.-M. Wang, and C. Zheng, "Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation," Industrial & Engineering Chemistry Research, vol. 39, pp. 948-954, Mar. 2000.
    [31] M. Wang, H. Zou, L. Shao, and J. Chen, "Controlling Factors and Mechanism of Preparing Needlelike CaCO3 under High-Gravity Environment," Powder Technology, vol. 142, pp. 166-174, Apr. 2004.
    [32] C.-C. Lin, T.-J. Ho, and W.-T. Liu, "Distillation in a Rotating Packed Bed," Journal of Chemical Engineering of Japan, vol. 35, pp. 1298-1304, 2002.
    [33] J. Nascimento, T. Ravagnani, and J. Pereira, "Experimental Study of a Rotating Packed Bed Distillation Column," Brazilian Journal of Chemical Engineering, vol. 26, pp. 219-226, Mar. 2009.
    [34] Y. Ku, Y.-S. Ji, and H.-W. Chen, "Ozonation of O-cresol in Aqueous Solutions Using a Rotating Packed-Bed Reactor," Water Environment Research, vol. 80, pp. 41-46, Jan. 2008.
    [35] C. C. Lin and W. T. Liu, "Ozone Oxidation in a Rotating Packed Bed," Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 78, pp. 138-141, Feb. 2003.
    [36] G. Q. Wang, O. G. Xu, Z. C. Xu, and J. B. Ji, "New HIGEE-Rotating Zigzag Bed and Its Mass Transfer Performance," Industrial & Engineering Chemistry Research, vol. 47, pp. 8840-8846, Nov. 2008.
    [37] A. A. Olajire, "CO2 Capture and Separation Technologies for End-of-Pipe Applications - A review," Energy, vol. 35, pp. 2610-2628, Jun. 2010.
    [38] G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, and A. Voice, "Aqueous Piperazine as the New Standard for CO2 Capture Technology," Chemical Engineering Journal, vol. 171, pp. 725-733, Jul. 2011.
    [39] H.H. Cheng, and C.S. Tan, "Carbon Dioxide Capture by Blended Alkanolamines in Rotating Packed Bed," Energy Procedia 1, 925-932 2099.
    [40] H.H. Cheng, Lai, and C.S. Tan, "Thermal Regeneration of Alkanolamine Solutions in a Rotating Packed Bed," Int. J. Greenhouse Gas Control 16, 206-216 2013.
    [41] R. J. Hook, "An Investigation of Some Sterically Hindered Amines as Potential Carbon Dioxide Scrubbing Compounds," Industrial & Engineering Chemistry Research, vol. 36, pp. 1779-1790, May. 1997.
    [42] K. Simons, K. Nijmeijer, H. Mengers, W. Brilman, and M. Wessling, "Highly Selective Amino Acid Salt Solutions as Absorption Liquid for CO2 Capture in Gas–Liquid Membrane Contactors," ChemSusChem, vol. 3, pp. 939-947, Jul. 2010.
    [43] S. Ahn, H. J. Song, J. W. Park, J. H. Lee, I. Y. Lee, and K. R. Jang, "Characterization of Metal Corrosion by Aqueous Amino Acid Salts for the Capture of CO2," Korean Journal of Chemical Engineering, vol. 27, pp. 1576-1580, Sep. 2010.
    [44] Q. Z. Huang, S. Bhatnagar, J. E. Remias, J. P. Selegue, and K. L. Liu, "Thermal Degradation of Amino Acid Salts in CO2 Capture," International Journal of Greenhouse Gas Control, vol. 19, pp. 243-250, Nov. 2013.
    [45] D. A. Kuettel, B. Fischer, S. Hohe, R. Joh, M. Kinzl, and R. Schneider, "Removal of Acidic Gases and Metal Ion Contaminants with PostCap (TM) Technology," Energy Procedia, vol. 37, pp. 1687-1695, 2013.
    [46] H. Ling, S. Liu, H. Gao, Liang and P. "Effect of Heat-Stable Salts on Absorption/Desorption Performance of Aqueous Monoethanolamine (MEA) Solution during Carbon Dioxide Capture Process", 212: 822-833 2019.
    [47] Z. Liang, R. Idem, P. Tontiwachwuthikul, F. Yu, H. Liu and W. J. A. J. Rongwong "Experimental Study on the Solvent Regeneration of a CO2‐loaded MEA Solution Using Single and Hybrid Solid Acid Catalyst", 62(3): 753-765 2016.
    [48] C.C. Lin, W. T. Liu, and C. S. Tan, "Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed", Ind. Eng. Chem. Res.42, 2381-2386 2003.
    [49] B. Dutcher, M. Fan, B. Leonard, M. D. Dyar, J. Tang, E. A. Speicher, P. Liu and Y. J. T. J. o. P. C. C. Zhang, "Use of Nanoporous FeOOH as a Catalytic Support for NaHCO3 Decomposition Aimed at Reduction of Energy Requirement of Na2CO3/NaHCO3 Based CO2 Separation Technology." 115(31): 15532-15544 2011.
    [50] R. Idem, H. Shi, D. Gelowitz and P. Tontiwachwuthikul, "Catalytic Method and Apparatus for Separating a Gaseous Component from an Incoming Gas Stream", U.S. Patents 9586175 2017.
    [51] D. Vernekar, D. J. C. S. Jagadeesan and Technology, "Tunable Acid–Base Bifunctional Catalytic Activity of FeOOH in an Orthogonal Tandem Reaction.", 5(8): 4029-4038 2015.
    [52] W. Luo, C. Jiang, Y. Li, S. A. Shevlin, X. Han, K. Qiu, Y. Cheng, Z. Guo, W. Huang and J. J. J. o. M. C. A. Tang, "Highly Crystallized α-FeOOH for a Stable and Efficient Oxygen Evolution Reaction." 5(5): 2021-2028 2017.

    QR CODE