研究生: |
陳昭潔 Chen, Zhao-Jie |
---|---|
論文名稱: |
探索生成式AI對App使用者的影響:以遊戲化專注App Flora為例 Exploring the Impact of Generative AI on App Users: A Case Study of Flora, the Gamified Focus App |
指導教授: |
吳尚鴻
Wu, Shan-Hung 胡敏君 Hu, Min-Chun |
口試委員: |
陶亞倫
Tao, Ya-Lun 張永儒 Chang, Yung-Ju |
學位類別: |
碩士 Master |
系所名稱: |
教務處 - 跨院國際碩士學位學程 International Intercollegiate Master Program |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 29 |
中文關鍵詞: | 生成式AI 、App 、Flora 、創作 |
外文關鍵詞: | Generative AI, App, Flora, Creation |
相關次數: | 點閱:94 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的迅速發展,移動應用程式(App)已成為不可或缺的日常元素。App素材在藝術創作中扮演著至關重要的角色,尤其在遊戲化的App中,這些素材直接影響使用者對App的偏好和使用持續性。素材的巧妙設計形成使用者對App的首次印象,直接影響對玩法和使用體驗的評價。同時,生成式人工智慧技術的普及為藝術家帶來更多創作可能性,透過AI,創作者能創造出更多元的素材,進而影響藝術品的創新性。AI不僅是創作者的強力助手,協助創造更豐富多樣的素材,同時也改變了觀賞者的感知體驗。
雖然有先前的研究開始探討AI在藝術中的應用,對於AI對觀賞者和創作者實質影響的深入理解仍然有所不足,特別是在創作者整合AI生成的App素材和使用者觀賞這些素材的情境下,這兩者的體驗相當缺乏研究。因此本篇論文深入瞭解AI對創作者在App素材創作和使用者觀賞體驗的影響。我們與 Flora app 團隊合作,以種植物的旅程為主題,提供使用者在不同旅程中種植植物的體驗。我們設計了五個主題的App素材,包含未使用AI輔助生成的素材、部分使用AI輔助生成的素材,以及完全仰賴AI生成的素材,也透過AI為每個主題中的各類素材設計不同的背景動畫。通過觀察使用者在專注時是否會因為有背景動畫而影響其專注度及視覺感受,我們探討依靠AI創作的圖像是否對觀賞者產生差異性。
With the rapid development of technology, mobile applications (Apps) have become an indispensable element of daily life. App assets play a crucial role in artistic creation, especially in gamified Apps, where these assets directly influence users' preferences and usage continuity. Cleverly designed assets form users' first impressions of the App, directly affecting their evaluations of gameplay and user experience. Meanwhile, the popularization of generative artificial intelligence technology brings more creative possibilities to artists. Through AI, creators can generate a more diverse range of assets, thereby impacting the innovation of artworks. AI not only serves as a powerful assistant to creators, helping to create richer and more varied assets, but also changes viewers' perception and experience.
Although previous studies have begun to explore the application of AI in art, there is still a lack of in-depth understanding of the substantial impact of AI on viewers and creators, especially in the context of creators integrating AI-generated App assets and users' experience of viewing these assets. Therefore, this paper aims to deeply understand the impact of AI on creators in the creation of App assets and users' viewing experience. We collaborated with the Flora app team, focusing on the theme of plant cultivation journeys, to provide users with the experience of planting plants on different journeys. We designed App assets for five themes, including assets not using AI-assisted generation, partially AI-assisted generated assets, and assets completely reliant on AI generation. We also used AI to design different background animations for each category of assets in each theme. By observing whether users' focus is affected by the presence of background animations and their visual perception during concentration, we investigate whether images created relying on AI generate differences for viewers.
1. Qiao, H., Liu, V., & Chilton, L. (2022). Initial Images: Using Image Prompts to Improve Subject Representation in Multimodal AI Generated Art. Proceedings of the 14th Conference on Creativity and Cognition, 15-28.
2. Garvey, G. P. (2023). A University Curriculum Course for Undergraduates: Artificial Intelligence and Art. SIGGRAPH Asia 2023 Educator's Forum, 1-2.
3. Spratt, E. L. (2018). Computers and Art in the Age of Machine Learning. XRDS: Crossroads, The ACM Magazine for Students, 24(3), 8-10.
4. Li, J. (2023). Computational Creativity: Bridging Art and Computer Science. XRDS: Crossroads, The ACM Magazine for Students, 29(4), 5.
5. Yilma, B. A., & Leiva, L. A. (2023). The Elements of Visual Art Recommendation: Learning Latent Semantic Representations of Paintings. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, 1-17.
6. DiPaola, S., & Choi, S. K. (2023). Art creation as an emergent multimodal journey in Artificial Intelligence latent space. ICMI '23 Companion: Companion Publication of the 25th International Conference on Multimodal Interaction, 247-253.
7. Smith, A., & Cook, M. (2023). AI-Generated Imagery: A New Era for the `Readymade'. SIGGRAPH Asia 2023 Art Papers, 1-4.
8. Bourgault, S., & E, J. (2023). Exploring the Horizon of Computation for Creativity. XRDS: Crossroads, The ACM Magazine for Students, 29(4), 6-9.
9. Glinka, K., & Müller-Birn, C. (2023). Critical-Reflective Human-AI Collaboration: Exploring Computational Tools for Art Historical Image Retrieval. Proceedings of the ACM on Human-Computer Interaction, 7(263), 1-33.
10. Jiang, H. H., Brown, L., Cheng, J., Khan, M., Gupta, A., Workman, D., Hanna, A., Flowers, J., & Gebru, T. (2023). AI Art and its Impact on Artists. AIES '23: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, 363-374.
11. Ch'ng, E. (2019). Art by Computing Machinery: Is Machine Art Acceptable in the Artworld? ACM Transactions on Multimedia Computing, Communications, and Applications, 15(2s), 1-17.
12. Daniele, A., & Song, Y.-Z. (2019). AI + Art = Human. AIES '19: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, 155-161.
13. She, J. (2019). Introduction to the Special Issue on Big Data, Machine Learning, and AI Technologies for Art and Design. ACM Transactions on Multimedia Computing, Communications, and Applications, 15(2s), 1-3.
14. Shermer, M. (2017). Why artificial intelligence is not an existential threat. Skeptic, 22(2), 29.
15. Hong, J.-W., & Curran, N. M. (2019). Artificial Intelligence, Artists, and Art: Attitudes Toward Artwork Produced by Humans vs. Artificial Intelligence. ACM Transactions on Multimedia Computing, Communications, and Applications, 15(2s), 1-16.
16. Srinivasan, R., & Uchino, K. (2021). Biases in Generative Art: A Causal Look from the Lens of Art History. FAccT '21: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 41-51.
17. Hemment, D., Currie, M., Bennett, S., Elwes, J., Ridler, A., Sinders, C., Vidmar, M., Hill, R., & Warner, H. (2023). AI in the Public Eye: Investigating Public AI Literacy Through AI. FAccT '23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, 931-942.
18. Moffat, D., and Kelly, M. (2006). An investigation into people’s bias against computational creativity in music composition. In The Third Joint Workshop on Computational Creativity, ECAI 2006. Trento, Italy: Universita di Trento.
19. Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative Adversarial Networks, Generating "Art" by Learning About Styles and Deviating from Style Norms. International Conference on Innovative Computing and Cloud Computing.
20. Levine, J. (1983). Materialism and qualia: The explanatory gap. Pacific philosophical quarterly, 64(4), 354–361.
21. Mikalonytė, E. S., & Kneer, M. (2022). Can Artificial Intelligence Make Art?: Folk Intuitions as to whether AI-driven Robots Can Be Viewed as Artists and Produce Art. ACM Transactions on Human-Robot Interaction, 11(4), 1-19.
22. AI Artwork Goes Up for Auction for £30,000 at Sotheby’s. (2019). THE VALUE. https://reurl.cc/rrAzdZ
23. Is artificial intelligence set to become art’s next medium? (2018). Christie's. https://goo.gl/4LDZjX
24. Zarzycki, A. (2023). Maintaining agency in AI-generated works of art and design: Deliberate creative processes. SA '23: SIGGRAPH Asia 2023 Educator's Forum, 1-8.
25. Chen, J., An, J., Lyu, H., & Luo, J. (2023). How Art-like are AI-generated Images? An Exploratory Study. McGE '23: Proceedings of the 1st International Workshop on Multimedia Content Generation and Evaluation: New Methods and Practice, 19-22.
26. Huberman, A. (2022). Tools to Improve Your Focus & Concentration. PODCAST NOTES. https://reurl.cc/09G2qb