研究生: |
巫昆懋 Kun-Mao Wu |
---|---|
論文名稱: |
外加電場下多價鹽溶液中高分子電解質之行為模擬 Unfolding of polyelectrolytes in tetravalent salt solutions in electric fields: A computer simulation study. |
指導教授: |
蕭百沂
Pai-Yi Hsiao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 高分子電解質 、電泳分離 、基因定序 、郎日凡動力學 |
外文關鍵詞: | polyelectrolyte, electrophoresis, DNA sequence, Langevin dynamics simulations |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用Langevin dynamics模擬方法探討外加電場對多價鹽溶液中高分子電解質性質的影響。高分子電解質的尺寸,包含旋轉半徑(radius of gyration)及末端距(end-to-end distance),隨著電場變化而改變。在低電場下,旋轉半徑與末端距約為一定值,不會影響高分子電解質的行為;當電場加大超過某一臨界值,部分吸附在高分子上的反離子脫離高分子電解質束縛成為非吸附反離子,高分子電解質開始被拉伸;電場持續加大,聚離子鏈最後會被拉伸成棒狀。形狀因子Rg^2/Re^2與偏球率(Asphericity)的數值也反映出此一事實。臨界電場的值增加隨著鹽濃度增加而變大。當外加鹽濃度大約等於對等電荷濃度有最大臨界電場。在最緊密狀態高分子電解質球的拉伸臨界電場強度E*可由極化能與熱擾動能量相等時的電場求得,其結果顯示出與鏈長的相依性,E*~N^(-1/2) ,可以運用於電泳分離帶電且緊密摺疊的生物分子。非緊密摺疊的高分子電解質被拉伸的過渡行為較不明顯。在伸長狀態下高分子電解質的拉伸臨界電場與鏈長相依性的關係式約為E*~N^(-1) 。最後我們分析聚離子鏈以及吸附離子的動態行為,包含電泳遷移率,與吸附離子在聚離子鏈上分佈的情形。在低電場下,吸附反離子緊緊吸附在聚離子鏈上,減低了聚離子鏈的遷移率,吸附離子平均分佈在聚離子鏈上。在大電場下,電場對吸附反離子加速的力大於聚離子鏈的靜電力,吸附反離子在聚離子鏈上產生滑動現象,吸附反離子在聚離子上分佈產生不均勻現象,有較多吸附反離子分佈在順著電場方向的聚離子鏈一端。
By means of Langevin dynamics simultion,we investigated the properties of a flexible polyelectrolyte (PE) at different salt concentration in external electric fields. The radius of gyration (Rg) and end-to-end distance (Re) alter with the strength of electric field. At weak electric field, the values of Rg and Re are roughly constant. The field does not affect PE behavior. Further increasing electric field over a critical value, part of condensed counterions escape from the PE and become free counterions. The PE starts to be stretched and displays a rod like structure. The values of shape factor and asphericity of the chain show these behaviors too. Moreover, the higher the salt concentration, the higher the critical electric field will be. The critical electric field attains a maximum value when the salt concentration is around equivalence point. For the most compact PE globule, the unfolding critical field E* is determined by equaling the polarization energy and thermal energy(kT). The result gives the relation between the critical field E* and the chain length,E*~N^(-1/2) ,which can be used in electrophoretic separating of charged, globule biopolymers. The unfolding transition for noncollapsed PE is less pronounced. For elongated PE, we obtained a scaling law,E*~N^(-1). In the last section of study, we analyzed dynamic quantities including mobility of PE, and of condensed ions, and distribution of condensed ions on PE backbone. For small field, condensed counterions bind to PE and slow the mobility of PE. Condensed counterions distribute uniformly on PE backbone. For large field, the condensed counterions overcome the electrostatic interaction and can decondense or glide on the PE backbone. Condensed counterions thus distribute non-uniformly and prefer to stay on one side of PE backbone along the field direction.
參考文獻
Aitman, T.J. Br. Med. J. 2001, 323, 611, Science, medicine, and the future - DNA microarrays in medical practice.
Bowden, J.R.; Brennan, P.A. Br. J. Oral Maxillofacial Surg. 2004, 42, 542, DNA microarray technology: insights for oral and maxillofacial surgeons.
Chan, E.Y.; Goncalves, N.M.; Haeusler, R.A.; Hatch, A.J.; Larson, J.W.; Maletta, A.M.; Yantz, G.R.; Carstea, E.D.; Fuchs, M.; Wang, G.G.; Gullans, S.R.; Gilmanshin, R., Genome Res. 2004, 14, 1137, DNA Mapping Using Microfluidic Stretching and Single- Molecule Detection of Fluorescent Site-Specific Tags.
Ferree, S.; Blanch, H.W. Biophys J. 2003, 85, 2539, Electrokinetic Stretching of Tethered DNA.
Götting, N.; Fritz, H.; Maier, M.; Stamm, J.; Schoofs, T.; Bayer, E. Colloid Polym. Sci.1999, 277, 145, Effects of oligonucleotide adsorption on the physicochemical characteristics of a nanoparticle-based model delivery system for antisense drugs.
Hsiao, P.Y. Macromolecules 2006, 39, 7125, Chain morphology, swelling exponent, persistence length, like-charge attraction, and charge distribution around a chain in polyelectrolyte solutions: Effects of salt concentration and ion size studied by molecular dynamics simulations.
Ikegami, A; Imai N. J. Polym. Sci. 1962, 56,133, Precipitation of Polyelectrolytes by Salts.
Juang Y.-J.; Wang, S.; Hu, X.; Lee, L. J. Phys. Rev. Lett. 2004, 93, 268105, Dynamics of single polymers in a stagnation flow induced by electrokinetics.
LAMMPS. http://lammps.sandia.gov/
Larson, J.W.; Yantz, G.R.; Zhong, Q., Charnas, R.; D’Antoni, C.M.; Gallo, M.V.; Gillis, K.A.; Neely, L.A.; Phillips, K.M.; Wong, G.G.; Gullans, S.R.; Gilmanshin, R. Lab Chip 2006, 6, 1187, Single DNA molecule stretching in sudden mixed shear and elongational.
Livolant, J. P. F.; Sikorav, J. –L. J. Bio. Chem. 1996, 271, 5656, DNA Aggregation Induced by Polyamines and Cobalthexamine.
Lockhart, D.J.; Winzeler, E.A. Nature 2000, 405, 827, Genomics, gene expression and DNA arrays.
Nakanishi, M.; Noguchi, A. AdV. Drug DeliV. ReV. 2002, 54, 715, Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative.
Netz, R.R. J. Phys. Chem. B 2003, 107, 8208, Polyelectrolytes in Electric Fields.
Netz, R.R. Phys. ReV. Lett. 2003, 90, 128104, Nonequilibrium Unfolding of Polyelectrolyte Condensates in Electric Fields.
Noguchi, H.; Yoshikawa, K. J. Chem. Phys. 1998, 109, 5070, Morphological variation in a collapsed single homopolymer chain.
Olvera de la Cruz, M.; Belloni, L.; Delsanti, M.; Dalbiez, J. P.; Spalla, O.; Drifford, M. J. Chem. Phys. 1995, 103, 5781, Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent salts.
Oosawa, F. 1971, Polyelectrolytes, Marcel Dekker.
Perkins, T. T.; Smith, D. E.; Larson, R. G., Chu, S. Science 1995, 268, 83, Stretching of a single tethered polymer in a uniform flow.
Phillips, S. C. Biologicals 1995, 23, 13, Receptor-mediated DNA delivery a pproaches to human gene therapy.
Randall, G.C.; Doyle, P.S. Macromolecules 2005, 38, 2410, DNA deformation in electric fields: DNA driven past a cylindrical obstruction.
Randall, G.C.; Doyle, P.S. Phys. Rev. Lett. 2004, 93, 058102, Electrophoretic collision of a DNA molecule with an insulating Post.
Randall, G.C.; Schultz, K.M.; Doyle, P.S. Lab Chip 2006, 6, 516, Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices.
Raspaud, E.; Olvera de la Cruz, M.; Sikorav, J.-L.; Livolant, F. Biophys J. 1998, 74, 381, Precipitation of DNA by Polyamines: A Polyelectrolyte Behavior.
Rudnick, J.; Gaspari, G. J. Phys.A: Math. Gen. 1986, 19, L191, The asphericity of random walks.
Sanger, F.; Nicklen, S.; Coulson, R. Proc. Natl. Acad. Sci. USA 1977, 74, 5463, DNA sequencing with chain-terminating inhibitors.
Smith, S. B.; Cui, Y.; Bustamante, C. Science 1996, 271, 795, Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules.
Stellwagen, N.C.; Gelfi, C.; Righetti, P.G. Biopolymers 1997, 42, 687, The Free Solution Mobility of DNA.
Stevens, M.J.; Kremer, K. J. Chem. Phys. 1995, 103, 1669, The nature of flexible linear polyelectrolytesin salt free solution: A molecular dynamics study.
Tanaka, M. J. Phys. Condens. Matter 2004, 16, S2127, Electrophoresis of a rod macroion under polyelectrolyte salt: is mobility reversed for DNA?
Tanaka, M.; Grosberg, A.Y. Eur. Phys. J. E 2002, 7, 371, Electrophoresis of a charge-inverted macroion complex: Molecular-dynamics study.
Tiselius, A. Trans. Faraday. Soc. 1937, 33, 524, A new apparatus for electrophoretic analysis of colloidal mixtures.
Ueda, K.; Iizumi, N.; Sakomura, M. Bull. Chem. Soc. Jpn. 2005, 78, 430, Orientation Behavior of Polyelectrolyte in Solution under an External Electric Field. A Coarse Grain Molecular Dynamics Simulation Study.
Viovy, J. -L. Rev. Mod. Phys. 2000, 72, 813, Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms.
Walker, H.W.; Grant, S.B. Colloids Surf. A 1996, 119, 229, Factors influencing the flocculation of colloidal particles by a model anionic polyelectrolyte.