簡易檢索 / 詳目顯示

研究生: 黃莉婷
Huang,Li Ting
論文名稱: 射出成型光學鏡片之光學性質分析與檢測
Performance Analysis and Inspection of Injection-molded Optical Lenses
指導教授: 王培仁
Wang, Pei Jen
口試委員: 羅丞曜
Lo,Cheng Yao
張國文
Chang, Kuo Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 射出成型塑膠光學鏡片雙折射殘留應力光程差
外文關鍵詞: Injection Molding, Lenses, Birefriengence, Wavefront, MTF
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本世紀以來,塑膠光學鏡片廣泛運用於智慧型手機產品,鏡頭生產量與日俱增,射出成型鏡片具有適合量產及低成本之優勢,成為塑膠光學鏡片的主要生產方式。在射出成型的過程中,光學高分子在歷經快速液固相變化冷卻之影響,鏡片之收縮、翹曲及雙折射等瑕疵成為鏡片之重要生產問題;因收縮與翹曲會影響鏡片之尺寸精度,而雙折射造成鏡片光學品質之大幅下降,現今改善光學鏡片之品品質與良率,是鏡片生產廠商所面臨的最大挑戰。
    鏡片於射出成型過程中,保留下流動殘留應力與熱殘留應力,主因高分子受到機械及熱應力作用;在射出之充填及保壓過程時,高分子因流動應力而拉伸展延,卻因黏彈特性產生應力記憶效應,在分子尚未鬆弛即被固化凍結,致鏡片內部形成殘流應力;同時熔融態高分子於接觸低溫模壁,冷卻速度過高而形成內張外壓的熱應力,此兩反差應力於鏡片形成最終翹曲變形。
    塑膠光學鏡片上之殘留應力影響最終之成像品質,本文採用一模兩穴的平凸實驗光學鏡片模具,以COP Zeonex480R塑料進行成型實驗,再以夏克-哈特曼波前感測器量測鏡片之成像光程差,將影響波前像差之兩大因子進行深入分析。再以電腦輔助工程模流軟體進行模擬分析,輔以成型後實驗鏡片數據比對應力及翹曲現象,藉以驗證模流分析之準確性,再將模流分析結果之機械性質轉換為幾何光學參數導入光學設計分析軟體,可計算成形鏡片之預測光程差,最終與實驗量測數據進行比較及驗證,並將光程差以傅氏轉換得出調制傳遞函數,做為鏡片光學檢測之成像品質成果。


    In this century, the optical plastic lenses have been widely used in smart phones with increasing production volume. Today, injection molding process has become the major production method due to the advantage of mass-production and lower costs. However, the polymeric materials would experience fast liquid-solid phase change due to rapid cooling during the process and exhibit consequential and dominant optical defects, i.e. post-shrinkage, birefringence and refractive index inhomogeneity. Now, all plastic lens manufacturers are facing the biggest challenges since quality improvements in circumventing all the defects in the lenses. In the process, the polymeric melt is injected via a runner system and gates into a mold, and then packed under high pressure until cooled to a solid part; hence, the melt has an thermo-mechanical history with visco-elastic effects. Consequently, the process introduces residual stresses and polymer orientation into the molded lenses which exhibit residual birefringence, lens warpage and shrinkage. The residual stresses would eventually affect the image quality of the injection molded lenses.
    In this thesis, a plano-convex lens molded with COP, ZEONEX 480R are used in the experiments. The wavefront measurement systems based on Shack-Hartmann sensor are adopted for verifications of factors influencing the image quality including surface deviations and birefringence. Then, CAE simulations based on commercial FEM predict stresses and warpage of the optical lens, and transforms the mechanical properties into the optical qualities so that wavefront aberrations could be calculated and verified. Finally, Optical performances such as PSF, MTF and Strehl Ratio are calculated based on the FFT of wavefront functions for serving the final optical quality.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1研究背景 1 1-2研究目的 2 第二章 文獻回顧 5 2-1黏彈材料特性及計算 5 2-2射出鏡片之光學特性分析 7 2-2-1 射出參數對雙折射率之影響 7 2-2-2射出參數對折射率之影響 9 2-3光程差之量測原理 9 2.4 波前轉換光學調制傳遞函數 11 2.5 總結 12 第三章 基礎理論與研究架構 17 3-1射出成型製程 17 3-1-1 射出成型階段 17 3-1-2射出成型製程問題 18 3-2射出成型鏡片之光學品質 18 3-2-1殘留應力問題 19 3-2-2 應力與雙折射率 20 3-2-3應力與折射率 20 3-3鏡片光學理論 21 3-4波前分析 24 3-3-1波前量測架構 24 3-3-2波前重建-澤尼克(Zernike)多項式 25 3-3-3光學調制傳遞函數 26 3-5CAE模流分析理論 27 3-6 研究方法 29 第四章 研究結果分析 35 4-1塑膠光學鏡片之設計與射出成型參數 35 4-2射出成型之透鏡光學量測 36 4-2-1波前量測架構 36 4-2-2 MatLab波前重建 38 4-2-3透鏡之波程差-內部、外部缺陷 38 4-2-4 透鏡之波程差-內部缺陷 38 4-2-4 模壓透鏡之波程差 39 4-3模流及光學軟體分析 40 4-3-1 模流軟體設定及分析 40 4-3-2 驗證模流軟體之準確性 41 4-3-3 光學軟體設定與分析 42 4-4波前的模擬與實驗結果比較與分析 43 4-5調製傳遞函數 43 第五章 結論與未來展望 62 5-1結論 62 5-2未來展望 63 參考文獻 64

    [1] H. H. NASSE, How to read MTF curves, Carl Zeiss Camera Lens, 2008.
    [2] N. G. Mccrun, C. P. Buckley and C. B. Bucnall, Principles of Polymer Engineering, Cambridge University Press,USA, pp. 101-166, 1988.
    [3] M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, 2nd Ed. Cambridge University Press, Cambridge, pp. 57-106, 2007.
    [4] T. Higashihara and M. Ueda, "Recent Progress in High Refractive Index Polymers," Macromolecules, Vol. 48, No.7, pp. 1915-1929, 2015.
    [5] S. Kang, J. S. Kim and H. Kim, "Birefringence Distribution in Magneto-optical Disk: Substrate Fabricated by Injection Compression Molding," Society of Photo-Optical Instrumentation Engineers, Vol. 39, No. 3, pp. 689-694, 2000.
    [6] M. D. Chidley , T. Tkaczyk , R. Kester and M. R. Descour, "Flow-induced Birefringence: the Hidden PSF Killer in High Performance Injection-molded Plastic Optics," Endoscopic Microscopy, Vol. 6082, pp. 50-60, 2006.
    [7] Lai, Huai En, and Pei Jen Wang. "Study of process parameters on optical qualities for injection-molded plastic lenses." Applied optics, Vol. 47, No.12, pp 2017-2027, 2008
    [8] B. Fan, D. O. Kazmer, W. C. Bushko, R. P. Therialut and A. J. Poslinski, "Birefringence Prediction of Optical Media," Poly. Engn. and Sci., Vol. 44, No.4, pp. 777-780, 2004.
    [9] N. H. Kim. and A. I. Isayav. , "Birefringence in injection-Compression Molding of Amorphous Polymers:Simulation and Experiment," Poly. Engn. and Sci., pp. 1786-1808, 2013.
    [10] Y. Maekawa, M. Onishi, A. Ando, S. Matsushima and F.S. Lai, "Prediction of Birefringence in Plasics Optical Elements Using 3D CAE for Injecting Molding," Physics and Simulation of Optoelectronic Devices, Vol. Proc.SPIE, No. 3944, pp. 935-943, 2000.
    [11] L. Su,Y. Chen and Allen Y. Yi;, "Refractive Index Variation in Compression Molding of Precision Glass Optical Components," Applied Optics, Vol. 47, No.10 pp. 1662-1667, 2008.
    [12] W. Zhao , Y. Chen, L. Shen and Allen Y. Yi, "Refractive Index and Dispersion Variation in Precision Optical Glass Molding by Computed Tomography," Applied Optics, Vol. 48, No.19, pp.3588-3595, 2009.
    [13] L. Li, T. W. Raasch and Allen Y. Yi, "Simulation and Measurement of Optical Aberrations of Injection Molded Progressive Addition Lenses," Applied Optics, Vol.52, No. 24, pp.6022-6029, 2013.
    [14] Platt, B. C.and R. Shack. "History and principles of Shack-Hartmann wavefront sensing."Refractive Surgery,17.5: S573-S577,2001.
    [15] Neal, D. R., J. Copland, and D. A. Neal. "Shack-Hartmann wavefront sensor precision and accuracy." In International Symposium on Optical Science and Technology, International Society for Optics and Photonics, p. 148-160, 2002.
    [16] C. Curatu, G. Curatu, and J. Rolland. "Fundamental and specific steps in Shack-Hartmann wavefront sensor design," SPIE Optics+ Photonics. International Society for Optics and Photonics, p. 628801-628801-9, 2006.
    [17] H. Liu, Z. Lu, and F. Li. "Using diffractive optical element and Zygo interferometer to test large-aperture convex surface," Optics and Laser Technology, Vol. 38, No.4,, pp.642-646, 2005.
    [18] F. Merola, M. Paturzo, S. Coppola, V. Vespini and P. Ferraro," Self-patterning of a polydimethylsiloxane microlens array on functionalized substrates and characterization by digital holography." J. Micromechanics and Microengineering, Vol. 19, No.12,, 2009.
    [19] C. Yang, L. Su, C. Huang, H.-X. Huang, J. Castro and Allen Y. Yi, "Effect of Packing Pressure on Refractive Index Variation in Injection Molding of Precision Plastic Optical Lens," Adv. in Polymer Technology, Vol. 30, No.1, pp. 51-61, 2011.
    [20] L. Li, T.W. Raasch, I. Sieber, E. Beckert, R. Steinkopf, U. Gengenbach and Allen Y. Yi, "Fabrication of Microinjection-molded Miniature Freeform Alvarez Lenses," Applied Optics, Vol. 53, No.19, pp.4248-4255, 2014.
    [21] P. Y. Maeda," Zernike polynomials and their use in describing the wavefront aberrations of the human eye."Standford University, http://www. stanford. edu/~ pmaeda, 2003.
    [22] 彭偉捷,八百萬畫素手機鏡頭設計,科儀新知,Vol.191, pp. 80-90, 2012,.
    [23] L. B. Suzanne and D. J. Cooper, "Pattern-Based Closed-Loop Quality Control for the Injection Molding Process," Poly. Eng. Sci, Vol. 37, No.5, pp. 801-812, 1997.
    [24] 張榮語, 射出成型模具設計-操作實務, 高立圖書有限公司, 1998.
    [25] R. R. Rammage, D. R. Neal and R. J. Copland,“Application of Shack-hartmann Wavefront Sensing Technology to Transmissive Optic Metrology,” Proc.SPIE, pp.161-172, 2002.
    [26] http://www.thorlabs.com/, thorlabs,micro lensarray, New Jersy, 2007
    [27] Leahy, C.,“Temporal Dynamics and Statistical Characteristics of Ocular Wavefront Aberrations and Accommodation.” Diss. National University of Ireland, Galway, 2010.
    [28] http://www.zeon.co.jp, ZEON, Chiyoda-Ku, Tokyo, Japan, 2007
    [29] https://www.panasonicfa.com/sites/default/files/pdfs/UA3P, Pansonic Corp, UA3P, 2010.
    [30] Leahy, C.,“Temporal Dynamics and Statistical Characteristics of Ocular Wavefront Aberrations and Accommodation.” PhD Thesis. National University of Ireland, Galway, 2010.
    [31] D. J. Schroeder, Astronomical optics, Academic Press,USA, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE