簡易檢索 / 詳目顯示

研究生: 陳新儒
CHEN, SHIN-RU
論文名稱: 室內乾貯兩種護箱型式混合存放策略研析
Indoor Mixing Dry Storage Strategy Analysis of Two Models of Casks
指導教授: 白寶實
PEI, BAU-SHEI
曾永信
TSENG, YUNG-HSIN
口試委員: 許文勝
HSU, WEN-SHENG
林志宏
LIN, CHIH-HUNG
苑穎瑞
YUANN, YING-RUEI
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 室內乾貯混合存放金屬護箱混凝土護箱
外文關鍵詞: indoor dry storage, mixed storage, metal cask, concrete cask
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混凝土護箱和金屬護箱是核能界廣泛採用的兩種乾貯系統,台灣目前的乾式貯存規劃分成兩階段,第一階段使用混凝土護箱並採露天貯存方式,第二階段可能引進金屬護箱並對所有乾貯護箱採室內貯存。因為第二階段乾貯預期會有兩種護箱混合貯存於乾貯廠房的情境,考量混凝土、金屬兩類護箱移熱的機制有相當的差異,混合存放策略值得研析。
    國內乾式貯存系統熱傳相關的研究相當多,主要著眼於法規要求的長期貯存、短期裝填操作及假想事故下,燃料及乾貯設備組件的溫度仍可維持在法規的溫度、溫升限值及各類材料的容許溫度之內。這些研究大都受限於計算資源,僅能針對特定的護箱型式來進行分析,並無深入探討兩類以上護箱混合置放的情境。福島事故後業界對於冷與熱的用過核子燃料在用過燃料池之擺放規則,曾做過棋盤式交錯置放、1x4置放、1x8置放對熱傳的影響分析,本論文的特色是延伸此概念,對於兩種護箱型式同時存放於室內,運用空氣自然對流以及熱輻射等被動式冷卻機制移熱,深入研究在不同的置放情境下,對於各類護箱熱移除效能的影響。因為不同護箱的移熱機制有相當大的差異,兩類護箱混合存放於同一廠房,涉及複雜的傳導、對流、輻射熱傳,經由大量繁雜的計算和歸納整理,本論文期許能找出較佳的存放策略,提供未來國內第二階段乾貯設計之參考。
    本論文以ANSYS Fluent CFD軟體建構乾貯廠房模型及兩種乾貯護箱模型,並在案例分析之前,先參照兩種乾貯護箱的安全分析報告的資訊,完成分析模型的驗證。案例分析階段則先以廠房模型模擬不同的護箱列置方式:包括棋盤式置放、混凝土護箱靠外置放、金屬護箱靠外置放、分區置放;模擬不同的混凝土護箱/金屬護箱比例:60:60、32:88、16:104;模擬不同的護箱間距:5.8 m、5.0 m、4.2 m。以這些列置方式、護箱比例及護箱間距組合,由廠房模型分析結果歸納整理這些擺放策略最受限的參數組合,再以兩種護箱模型計算各個組件的溫度分布,確認仍在容許溫度之內。
    在歸納整理出兩類護箱混合存放對熱傳的影響效應後,本論文進一步延伸分析三種國內可能面臨的室內存放情境:全金屬護箱、INER-HPS 16組+金屬護箱、INER-HPS 16組+混凝土護箱。以這些情境分析,與目前預見的實務需求緊密結合,實際運用本研究歸納分析之成果。


    Concrete cask system and metal cask system are two kinds of dry storage systems widely used in the nuclear industry. The current dry storage plan in Taiwan is divided into two stages. The first stage will use concrete cask system with outdoor storage. The second stage may introduce metal cask system with all casks indoor storage. Since the second stage of dry storage is expected to have two types of casks mixed and stored in a building, considering the large differences of the heat transfer mechanism of the two types of casks, the mixed storage strategy is worth studying.
    Since the computational resources is expensive and restricted, there is no research on two or more type of dry storage cask mixed indoor storage. This study tries to use the idea from recently discharged spent fuel applying checker board, one by four, one by eight storage strategy in the spent fuel pool, which comes from post-Fukushima research, to conceive various indoor cask storage phenomena and compare the effect on the heat transfer. After this study, we have summarized several useful principles about the optima mixed storage strategy.
    In this paper, ANSYS Fluent CFD software is used to construct a dry storage building model and two dry storage cask models. Before case study, this paper completed the verification of the cask Fluent models with the information from the final safety analysis reports of the two cask systems.
    For the case study, we use the dry storage building model to simulate the various arrangement of the cask systems: including checkerboard placement, concrete casks placed close to the ventilation inlet, metal casks placed close to the ventilation inlet, and partitioned placement (concrete casks placed by corners); simulate various concrete casks/metal casks ratio: 60:60, 32:88, 16:104; simulate various cask pitches: 5.8 m, 5.0 m, 4.2 m. Based on the results of case study, the most restrictive combination of the assumptions was input into two cask models. The analysis result confirms that all the components of the two casks are still within their allowable temperatures.
    We analyze three possible indoor storage phenomena in Taiwan: all metal casks, 16 INER-HPS concrete casks + other metal casks, 16 INER-HPS concrete casks + other concrete casks. In addition to reconfirming the correctness of the opinions of this paper, those studies demonstrate the principles established in this paper can be used in practice.

    摘要---------------------------------i Abstract-----------------------------ii 致謝----------------------------------iv 目錄----------------------------------v 表目錄--------------------------------viii 圖目錄--------------------------------x 第一章 緒論---------------------------1 1.1 研究背景--------------------------1 1.2 文獻回顧--------------------------3 1.3 研究相關廠房、系統、組件-------------18 1.3.1 Holtec HI-STAR 100乾貯護箱系統----18 1.3.2 Holtec HI-STORM 100乾貯護箱系統---20 1.3.3 INER-HPS乾貯護箱系統--------------22 1.3.4 GNS CASTOR® V/52乾貯護箱系統------23 1.3.5 廠房系統--------------------------25 1.4 各型護箱設計之材料性質---------------26 1.4.1 固體材料--------------------------26 1.4.2 流體材料--------------------------28 1.4.3 燃料束均質化材質-------------------29 1.5 燃料型式及熱負荷假設-----------------30 1.5.1 燃料型式--------------------------30 1.5.2 提籃燃料功率分布-------------------30 1.5.3 燃料軸向功率分布-------------------32 1.5.4 燃料型式及軸向功率假設之影響分析-----33 第二章 研究模型與統御方程式-----------------37 2.1 研究模型建立--------------------------37 2.1.1 HOLTEC-MPC-68模式發展---------------37 2.1.2 Holtec HI-STAR 100護箱模式發展------38 2.1.3 Holtec HI-STORM 100乾貯護箱模型-----40 2.1.4 廠房模式----------------------------42 2.1.5 各式護箱於廠房內貯存時之視因子---------44 2.2 統御方程式-----------------------------47 2.3 數值模式-------------------------------49 2.3.1 DO熱輻射模式-------------------------49 2.3.2 紊流模式-----------------------------50 2.3.3 自然對流模式--------------------------51 第三章 分析模式驗證--------------------------53 3.1 HI-STAR 100分析模式驗證-----------------53 3.2 HI-STORM 100護箱模式驗證----------------56 第四章 單一廠房貯存不同類型護箱之熱傳影響分析---59 4.1 基礎案例研析-棋盤式列置-------------------59 4.2 改變護箱列置狀況對於熱傳之影響分析---------65 4.2.1 混凝土護箱靠外置放 (比例60:60,間距5.8m)-65 4.2.2 金屬護箱靠外置放(比例60:60,間距5.8m)----68 4.2.3 分區置放(比例60:60,間距5.8m)-----------70 4.2.4 列置方式比較(比例60:60,間距5.8m)-------72 4.3 改變護箱比例對於熱傳之影響分析-------------74 4.4 改變護箱間距對於熱傳之影響分析-------------80 4.5 保守參數組合下對正常貯存之最大影響分析------85 4.6 實際運用案例分析--------------------------88 4.6.1 情境1- 全金屬護箱----------------------91 4.6.2 情境2- INER-HPS 16組 +金屬護箱---------91 4.6.3 情境3- INER-HPS 16組 +混凝土護箱-------91 第五章 結論---------------------------------93 參考文獻------------------------------------96

    1. U.S. Department of Energy Yucca Mountain Site Characterization Project: “SPENT NUCLEAR FUEL EFFECTIVE THERMAL CONDUCTIVITY REPORT”, July 11, 1996
    2. Seung Hun Yoo, Hee Cheon NO, Hyeun Min Kim, Eo Hwak Lee: “CFD-assisted scaling methodology and thermal-hydraulic experiment for a single spent fuel assembly”, 2010
    3. Luis E. Herranz, Jaime Penalva, Francisco Feria: “CFD analysis of a cask for spent fuel dry storage: Model fundamentals and sensitivity studies”, 2014
    4. Jie Li, Yung Y. Liu: “Thermal modeling of a vertical dry storage cask for used nuclear fuel”, 2016
    5. Jakob, M. and Hawkins, G.A., "Elements of Heat Transfer", John Wiley & Sons, New York, 1957.
    6. Donald D. Gray and Aldo Giorcini : “THE VALIDITY OF THE BOUSSINESQ APPROXIMATION FOR LIQUIDS AND GASES”, 1976
    7. US DOE: “Modeling Validation Exercises Using the Dry Cask Simulator -Spent Fuel and Waste Disposition“, January 6, 2020
    8. HOLTEC International, “Final Safety Analysis Report OF HI-STAR 100 Cask System,” ML093070147, Rev. 3.I.
    9. HOLTEC International, “Final Safety Analysis Report OF HI-STORM 100 Cask System,” ML1638A100.
    10. U.S. Nuclear Regulatory Commission, “Holtec International HI-STORM 100 Cask System Safety Evaluation Report,” ML003711779.
    11. 台灣電力股份有限公司, ”核一廠用過燃料乾式貯存設施安全分析報告”, 97年1月
    12. 施純寬、曾永信, “除役核電廠用過核燃料室內乾式貯存安全管制技術”, 期末報告,106年12月
    13. 許榮鈞等人, “除役核電廠用過核燃料室內乾式貯存安全管制技術”, 期末報告,106年12月
    14. 許榮鈞等人, “精進用過核燃料室內乾式貯存設施安全審查技術之研究”, 期末報告,107年12月
    15. 許榮鈞等人, “核電廠除役之室內乾貯安全分析平行驗證研究”,108年12月
    16. 曾永信, “計算流體力學分析方法論/乾式貯存與大修機組冷卻之熱流分析應用”, TITRAM/CS/KS-CFD-MHD-01,2010年10月
    17. 馮玉明、陳紹文、曾永信, “核電廠特殊燃料進行乾貯作業之熱流特性及燃料護套完整性研究”,104年9月
    18. 行政院原子能委員會放射性物料管理局,“申請設置用過核子燃料乾式貯存設施安全分析報告導則”,108年1月18日
    19. 行政院原子能委員會放射性物料管理局,“用過核子燃料乾式貯存設施安全分析報告審查導則”,108年1月18日
    20. 曾永信,“計算流體力學分析方法論/乾式貯存與大修機組冷卻之熱流分析應用”, TITRAM/CS/KS-CFD-MHD-01,2010年10月
    21. HOLTEC International,” Characterizing the Flow Regime in Ventilated Dry Storage Casks”, ML051170450, April 21, 2005
    22. NAC International, “NAC-UMS Universal Storage System FINAL SAFETY ANALYSIS REPORT for the UMS Universal Storage System”, Revision 11 (Docket No. 72-1015), November 2016
    23. U.S. Nuclear Regulatory Commission, “Standard Review Plan for Spent Fuel Dry Storage Facilities,” NUREG-1567, March, 2000
    24. U.S. Nuclear Regulatory Commission, “Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications: Final Report;” NUREG-2152 , March, 2013
    25. U.S. Nuclear Regulatory Commission, “Validation of Computational Fluid Dynamics Methods Using Prototypic Light Water Reactor Spent Fuel Assembly Thermal-Hydraulic Data”, NUREG-2208, March 2017
    26. U.S. Nuclear Regulatory Commission, “Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications: Final Report;” NUREG-2152 , March, 2013
    27. U.S.NRC, “ Standard Review Plan for Spent Fuel Dry Storage Systems and Facilities-DRAFT”, NUREG-2215, 2017
    28. JM Cuta, SR Suffield, JA Fort, HE Adkins, “Thermal Performance Sensitivity Studies In Support Of Material Modeling For Extended Storage Of Used Nuclear Fuel.,” PNNL-22646, U.S., September , 2013
    29. http://www.proatom.ru/modules.php?name=News&file=print&sid=6943

    QR CODE