簡易檢索 / 詳目顯示

研究生: 謝景安
Sie, Jing-An
論文名稱: 雷射激發光陰極電子槍直線加速器之束流動力學研究
Investigation of beam dynamics in a linac system equipped with laser-driven radio frequency electron gun
指導教授: 劉偉強
Lau, Wai-Keung
潘犀靈
Pan, Ci-Ling
口試委員: 張存續
Chang, Tsun-Hsu
李安平
Lee, An-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 光陰極電子槍直線加速器束流動力學速度群聚蕭特基效應空間電荷追蹤軟體高亮度電子束超短電子束
外文關鍵詞: radio frequency electron gun, linac, beam dynamics, velocity bunching, Schottky effect, ASTRA, high brightness electron beam, ultra-short electron beam
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光注入器系統是許多新穎加速器設施所採用的低束散電子源裝置。我們利用調校系統中直線加速器加速電場的相位可控制速度群聚(Velocity bunching)機轉的發生,從而可以產生次皮秒量級的高亮度電子束脈衝供後端進行各種同調光源研究使用。由於過去分析光注入器中束流動力學所使用的電腦模擬軟體如PARMELA、GPT(Generic Particle Tracer)等都忽略了一些電子束在陰極附近所發生的物理現象如鏡電荷、蕭特基等效應,所建立的系統模型無法反映注入器系統在操作時一些實際狀況。因此,我們使用SUPERFISH/POISSON建立起系統中電磁波結構、螺線圈磁鐵之二維模型,並將這個數據檔導入一套較為完善的空間電荷追蹤軟體—ASTRA中,進行系統內的束流動力學分析並優化各個參數尋求產生最佳超短電子脈衝的操作條件。除此以外,我們亦將分析在各個操作參數有變動的情況下對高亮度束流特性的影響。


    Photoinjectors are low-emittance electron sources being used in many modern accelerator facilities. A 2998 MHz photoinjector has been built for light source development at NSRRC. It is of interest to generate short electron pulses from this injector for coherent emission of THz radiation. By controlling the phase of accelerating field in the rf linac, a physical mechanism called “velocity bunching” that occurs in the linac can be used to produce sub-picosecond electron beam. Common space charge tracking codes such as PARMELA and GPT (Generic Particle Tracer) can be used to simulate space charge dynamics in photoinjectors. However, some physical phenomena that occur near photo-cathodes such as image charge, Schottky effects etc. have not been considered in these codes. In order to establish a more accurate simulation model for the NSRRC photoinjector system, we use SUPERFISH/POISSON to setup 2D models of electromagnetic wave structures (i.e. rf gun cavity and linac structure), gun and linac solenoid magnets for the space charge tracking code -- ASTRA. By optimization of system parameters, we seek for operating condition to produce electron pulses at shortest bunch length. In addition, we study the tolerances of the system to parameter changes.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 縮寫表 XI 第一章 前言 1 1.1 背景 1 1.2 研究動機 3 1.3 研究目的 5 第二章 基本原理 6 2.1 光陰極物理 6 2.1.1 光電效應與光陰極 6 2.1.2 蕭特基效應 7 2.2 雷射激發光陰極射頻電子槍 10 2.2.1 基本原理 10 2.2.2 空間電荷力及束散度補償 13 2.3 直線加速器原理 19 2.3.1 行波等梯度加速週期性結構 19 2.3.2 速度群聚現象 24 第三章 NSRRC光陰極注射器介紹 26 3.1 束團電荷量測 26 3.1.1 束團電荷量測原理及方法 26 3.2 束散度量測 27 3.2.1 束散度量測原理及方法 27 第四章 電腦模擬 31 4.1 SUPERFISH/POISSON及ASTRA程式介紹 31 4.2 電磁結構模型 34 4.2.1 光陰極射頻電子槍 35 4.2.2 直線加速器結構 37 4.3 螺線圈磁鐵模型 39 4.3.1 電子槍外加螺線圈磁鐵 39 4.3.2 直線加速器外加螺線圈磁鐵 40 4.4 產生粒子分佈及光陰極模型 42 4.4.1 高斯分佈 43 4.4.2 高原分佈 45 4.4.3 光陰極模型 47 4.5 系統操作模式 51 4.5.1 超短束流 51 4.5.2 高亮度束流 52 第五章 模擬結果 53 5.1 高斯分佈 53 5.1.1 短束模式 53 5.1.2 低束散度模式(高亮度模式) 58 5.2 高原分佈 63 5.2.1 短束模式 63 5.2.2 低束散度模式(高亮度模式) 68 第六章 結果與討論 73 6.1 結論 73 6.2 給NSRRC光陰極注射器功能提升的建議 74 6.3 利用深度學習進行系統參數優化的需要和可行性 74 參考文獻 75 附錄 77 A.1 電子槍輸入檔 77 A.2 直線加速器輸入檔 78 A.3 電子槍外加螺線圈磁鐵輸入檔 79 A.4 直線加速器外加螺線圈磁鐵輸入檔 81 B.1 generator輸入檔 85 B.2 Astra輸入檔 86

    [1] David H. Dowell. Lecture 2: Electron Emission and Cathode Emittanc.
    [2] Dowell, D. & Schmerge, John. (2009). Quantum efficiency and thermal emittance of metal photocathodes. Reviews of Modern Physics - REV MOD PHYS. 12. 10.1103/PhysRevSTAB.12.074201.
    [3] Kim, Kwang-Je. (1988). RF and space-charge effects in laser-driven rf electron guns (LBL--25807). United States.
    [4] Carlsten, B.E. & Sheffield, R. & McVey, B.D.. (1990). Photoelectric injector designs at Los Alamos National Laboratory. Workshop on short pulse high current cathodes, Bendor (France), 18-22 Jun 1990. LA-UR-90-3180 ; CONF-9006242--2 ; DE06542005 ; NTIS, PC A03/MF A01 - OSTI; GPO Dep.. Size: Pages: (21 p)
    [5] G. A. Loew, R. H. Miller, R. A. Early and K. L. Bane, "Computer Calculations of Traveling-Wave Periodic Structure Properties," in IEEE Transactions on Nuclear Science, vol. 26, no. 3, pp. 3701-3704, June 1979, doi: 10.1109/TNS.1979.4330585.
    [6] Serafini, L., & Ferrario, M. (Aug 2001). Velocity bunching in photo-injectors. AIP Conference Proceedings, 581(1), 87-106. doi:101063/11401564
    [7] Soby, Lars & Belohrad, David & Krupa, Michal & Odier, Patrick & Bergoz, Julien & Stulle, Frank. (2014). A New Integrating Current Transformer for the LHC.
    [8] Hans Braun & Dourdan. (2008). CAS Beam diagnostic.
    [9] Menzel, M T, & Stokes, H K. User`s guide for the POISSON/SUPERFISH Group of Codes. United States. doi:10.2172/10140823.
    [10] Klaus Floettmann. (March 2017). ASTRA : A Space Charge Tracking Algorithm Version 3.2.
    [11] Wen, Yung-Hsiang. (2017). Study on the Effect of Solenoid Magnetic Field on Beam Quality in Velocity Bunching.
    [12] Gizzi, Leonida & Assmann, Ralph & Koester, Petra & Giulietti, Antonio. (2019). Laser-Driven Sources of High Energy Particles and Radiation. doi:10.1007/978-3-030-25850-4.
    [13] Cianchi, Alessandro & Anania, Maria Pia & Bisesto, Fabrizio & Castellano, Michele & Chiadroni, Enrica & Pompili, Riccardo & Shpakov, Vladimir. (2016). Observations and Diagnostics in High Brightness Beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 829. 343-347. 10.1016/j.nima.2016.03.076.
    [14] Edelen, Auralee & Neveu, Nicole & Frey, Matthias & Huber, Yannick & Mayes, Christopher & Adelmann, Andreas. (2020). Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems. Physical Review Accelerators and Beams. 23. 10.1103/PhysRevAccelBeams.23.044601.

    QR CODE