簡易檢索 / 詳目顯示

研究生: 鄭宇翔
Yu-Shiang Cheng
論文名稱: 高溫注氫純水環境下採行抑制性被覆304不□鋼之腐蝕行為研究
指導教授: 蔡春鴻
Chuen-Horng Tsai
葉宗洸
Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 81
中文關鍵詞: 沿晶應力腐蝕抑制性被覆
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著沸水式反應器(Boiling Water Reactor, BWRs)運轉時間的增長,反應器組件材料遭受沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)以及輻射促進應力腐蝕龜裂(Irradiation-Assisted Stress Corrosion Cracking, IASCC)的機率也逐漸提高。近年來,許多擁有BWR的電廠均已採用於飼水中添加氫氣的加氫水化學(Hydrogen Water Chemistry, HWC)技術,藉以防制IGSCC與IASCC的發生,而根據文獻結果顯示,HWC確實對沸水式反應器主冷卻迴路中的部分組件,具有防蝕保護的效果。然而,HWC技術的應用並非完美無缺,在較高飼水注氫量下(通常在0.6ppm以上),它具有提昇管路輻射計量的副作用;且對於壓力槽內部接近爐心出口附近的組件,如爐心上方空間和爐心側版上部等過氧化氫濃度偏高的區域,不能有效抑制IGSCC的發生。因此為達到在HWC狀態下進一步保護爐心出口附近若干區域之目的,甚至在無注氫狀態下達到全面防治組件發生IGSCC的目標,我們選擇抑制性被覆進行BWR組件之防蝕可行性研究。本實驗以氧化鋯(ZrO2)、氧化鈦(TiO2)及二硝酸基氧化鋯(ZrO(NO3)2)等化合物,在304不□鋼表面進行化學添加覆膜為研究對象,在覆膜前304不□鋼均先經650℃/24小時敏化處理和288℃,300ppb溶氧水預長氧化膜。於150℃被覆處理後之304不□鋼,在模擬BWR加氫水化學循環迴路中分別進行電化學腐蝕電位(Electrochemical Corrosion Potential, ECP)量測與慢速拉伸測試(Slow Strain Rate Test, SSRT),藉以了解此一材料在不同被覆狀態下,於高溫注氫純水環境中的腐蝕行為。研究結果發現,經過氧化鋯、氧化鈦與二硝酸基氧化鋯化學添加覆膜後的試片,在相同水化學環境中其ECP值皆比預長氧化膜試片來的低,且在注氫環境中其ECP值較未注氫時低,注氫量增加和施行抑制性覆膜處理均會使ECP值下降,兩者同時進行對降低ECP值有加成效果。在慢速拉伸實驗的部分,我們發現隨著注氫量提高,覆膜與未覆膜試片的IGSCC比例皆有降低的趨勢,並有較大的伸長量與較長的斷裂時間;在相同水化學環境中未覆膜(僅預長氧化膜)之試片出現IGSCC比例較覆膜試片低,但差異不大,且有較小的伸長量與較短的斷裂時間,顯示試片IGSCC起始的時間確實因抑制性被覆處理而延長,得到較長的斷裂時間、斷裂最大應力值和伸長量,以及數量較少的二次裂口,對延緩IGSCC有正面成效。


    Incidents of intergranular stress corrosion cracking (IGSCC) and irradiation-assisted stress corrosion cracking (IASCC) of stainless steel components in the primary coolant circuits of boiling water reactors (BWRs) are occurring with increasing frequency as the power reactors age. In the past decade, the HWC technique has been widely adopted as a measure for mitigating IGSCC and IASCC in BWR vessel internal components. However, this technique is not without problems. Along with the application of HWC is a shortcoming of exerting a high man-REM cost on the operator due to elevated radiation fields. Furthermore, it is not at all clear that HWC is effective in protecting some components against IGSCC, particularly for protecting in-vessel components that are exposed to high gamma and neutron fields. Therefore, new technologies, such as inhibitive coatings, were brought into consideration to enhance the effectiveness of HWC . In this study, an experiment will be conducted to investigate the effects of inhibitive coating with TiO2, ZrO2, and ZrO(NO3)2 by chemical immersion at 150℃on Type 304 SS. Measurements of electrochemical corrosion potential (ECP) and slow strain rate tensile (SSRT) tests in simulated BWR circulation loop to investigate the effects of inhibitive coating with zirconium oxide and with a compound containing zirconium oxide on Type 304 . Test results showed that the treated SS specimens exhibited lower ECP than the pre-oxidized specimen, and the specimens exhibited lower ECP in higher than in lower hydrogen consumption. Increasing hydrogen concentration and treating IPC both can reduce ECP. In the SSRT test results, all tested specimens showed less IGSCC in higher hydrogen concentration, and had the longer elongation and fracture time. In the same water chemistry environments, pre-oxidized one had less IGSCC, the lowest elongation and the shortest fracture time. The results indicated that IPC did prolong the crack initial times to get longer fracture times, larger maximum fracture stress, and less second cracks. That can provide protection against IGSCC.

    第一章 前言 第二章 原理 第三章 文獻回顧 第四章 實驗 第五章 結果與討論 第六章 結論 參考文獻

    1. M. Shindo et al, Journal of Nuclear Materials 233-237 (1996) 1393-1396.
    2. M.A. Al-Anezi, G.S. Frankel and A.K. Agrawal, Corrosion . Vol.55 No.11
    pp.1101-1109.
    3. R. L. Cowan, Nuclear Engineering International, January 1986, p. 26.
    4. M. E. Indig, Proc. 4th Intl. Symposium on Environmental Degradation of
    Materials in Nuclear Power Systems - Water Reactors, NACE, Jekyll Island,
    GA.,Aug. 6-10, 1989.
    5. L. W. Niedrach, Corrosion, Vol. 47, p. 162 (1991).
    6. Y. J. Kim, L. W. Niedrach, M. E. Indig, and P. L. Andresen, Journal of
    Metals ,Vol. 44, No. 2, p. 14 (1992).
    7. T.K. Yeh and D. D. Macdonald, Proc. 7th International Symposium on
    Environmental Degradation of Materials in Nuclear Power Systems - Water
    Reactors, NACE, Breckenridge, Colorado, Aug. 6-10, 1995, p. 909.
    8. Y. J. Kim and P. L. Andresen, CORROSION/96 , NACE, Denver, Colorado,
    Mar.24-29, 1996, Paper Number 105.
    9. R. Pathania, Zirconium Oxide Deposition to Mitigate IGSCC, BWRVIP Mitigation Committee Meeting, Atlanta, GA, October 1-3, 1997, EPRI.
    10. B. Stellwag, M. Lasch, and U. Staudt, 1998 JAIF Conference p186-193.
    11. Peter L. Andresen and Tom Angeliu, GE Corp. Research and Development Center, Corrosion96, The NACE International Annual Conference and Exposition, Paper No.84.
    12. Peter L. Andresen, GE Corp. Research and Development Center, Corrosion95, The NACE International Annual Conference and Corrosion Show, Paper No.412.
    13. D. D. Macdonald, SRI International, and Menlo Park, Corrosion Science, Vpl.32, No.1, pp.51-81, 1991.
    14. D. D. Macdonald Electrochimica Acta, Vol.31, No.8, pp.1079-1086, 1986.
    15. D. D. Macdonald, J. Electrochem. Soc., Vo;.139, No.12, December 1992.
    16. Mirna Urquidi-Macdonald and D. D. Macdonald, J. Electrochem. Soc., Vo;.136, No.4, April 1989.
    17. H. S. Kwon A. Wuensche, and D. D. Macdonald, Corrosion-Vol.56, No.5, pp.482-491, 2000.
    18. J. R. Galvele, Corrosion Science 41(1999)191-195.
    19. S. Hettiarachchi et al., Proc. 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, NACE, Breckenridge, Colorado, Aug. 6-10, 1995, p. 735.
    20. Y. J. Kim, L. W. Niedrach, and P. L. Andresen, CORROSION/95, NACE, Orlando, Florida, Mar. 26-31, 1995, Paper No. 99.
    21. Y. J. Kim et al., CORROSION/96, NACE, Denver, Colorado, Mar. 24-29, 1996, Paper Number 107.
    22. T. K. Yeh, C. H Liang, M. S. Yu, and D. D. Macdonald, Proceedings of the 8th Intl. Symp. Environ. Degrad. Matls. in Nuclear Power Systems - Water Reactors, Amelia Island, Florida, August 10-14, 1997, American Nuclear Society, p. 559.
    23.S. Hettiarachchi et al., Proceedings of the 8th Intl. Symp. Environ. Degrad. Matls. in Nuclear Power Systems - Water Reactors, Amelia Island, Florida, August 10-14, 1997, American Nuclear Society, p. 581.
    24. R. L. Cowan et al, GE Nuclear Energy, Vallecitos Nuclear Center, Nuclear Engineering and Design 166(1996)31-36.D. D. Macdonald, Corrosion, Vol. 48, No. 3, p. 194 (1992).
    25. Electric Power Research Institute, EPRI TR-103315-R1,1996.
    26. C. C. Lin, Proc. of the 1998 JAIF Water Chemistry Conference, JAIF,Kashiwazaki, Japan, Oct.11-16, 1998, p211.
    27. R. L Cowan, Nuclear Energy,36,No.4(1997)p.257.
    28. Y. J. Kim and Lorraine Falter Francis, Journal of the American Ceramic Society, Vol.76, No.3, pp.737-742(1993).
    30. K. Kato et al, Journal of Materials Science , 29(1994)5911-5915.
    31. N. Saito et al, Corrosion(2000)-Vol.56, No.1, pp.57-69.
    32. R. D. Maggio et al, Surface and Coatings Technology 89(1997)292-298.
    33.Dibyendu Ganguli and Debtosh Kundu, Central Glass and Ceramic Research Institute, India, Journal of Materials Science Letters, 3(1984)503-504.
    34. M. Atik et al., Journal of applied electrochemistry , Vol. 25, p. 142 (1995).
    35.M. Atik and J. Zarzycki, Journal of Materials Science Letters, 13(1994)1301-1304.
    36. M. Guglielmi et al, Journal of Materials Science, 27(1992)5052-5056.
    37. M. A. Sainz et al, Journal of Non-Crystalline Solids 121(1990)315-318.
    38. M. Atik and M. A. Aegerter, Journal of Non-Crystalline Solids 147&148(1992)813-819.
    39. F. Perdomo L. et al, Journal of materials science letters, 17(1998)295-298.
    40. M. Zaharescu et al, Journal of Non-Crystalline Solids 160(1993)162-166.
    41. A. Julbe et al, Journal of Membrane Science, 77(1993)137-153.
    42. A. Sanjurjo et al, SRI International, Surface and Coatings Technology, 49(1991) 116-120.
    43.Y. Takahashi and K. Yamaguchi, Journal of materials science 25(1990)3950-3955.
    44. F. Bel Hadj et al, Journal of Non-Crystalline Solids 82(1986)417-425.
    45. C. J. Brinker and A. J. Hurd, Journal De Physique III, 4(1994)1231-1242.
    46. O. Reglat , R. Labrie, and P. A. Tanguy, Journal of computational physics 109,238-346(1993).
    47. R. Pathania, BWRVIP Mitigation Committee Meeting, Lake Buena Vista, FL, December 1-2, 1999, EPRI.
    48. B. Stellwag and R. Kilian, Siemens Nuclear Power GmbH U.Staudt, VGB Germany3rd Workshop on LWR Coolant Water Radiolysis and Electrochemistry.
    49. G. L. Song et al, Institute of Corrosion and Protection of Metals, State Key Laboratory for Corrosion and Protection, Chinese Academy of Sciences, Shenyang, China, Corrosion Science, Vol.40, No.7, pp.1109-1117, 1998.
    50. X. Zhou, I. Balachov, and D. D. Macdonald, Corrosion Science. Vol.40 No.8 pp. 1349-1362.
    51. Y. J. Kim and Peter L. Andresen, CORROSION/98 Paper No.507.
    52. S. K. Yen and T. Y. Huang, Institute of Materials Engineering, National Chung Hsing University, Taiwan, Materials Chemistry and Physics 56(1998)214-221.
    53. M. Andritschky et al, Surface and Coatings Technology, 68/69(1994)81-85.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE