簡易檢索 / 詳目顯示

研究生: 曾煜程
Tseng, Yu-Cheng
論文名稱: 探討擴增實境融入國中化學之學習成效與認知負荷- 以「物質結構與化學反應平衡」為例
Exploring the Learning Effectiveness and Cognitive Load of Integrating Augmented Reality into Middle School Chemistry - Taking "Material Structure and Chemical Reaction Balance" as an Example
指導教授: 唐文華
Tang, Wen-Hua
區國良
Ou, Kuo-Liang
口試委員: 游坤明
YU, KUN-MING
林志明
Lin, Chin-Ming
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 學習科學與科技研究所
Institute of Learning Sciences and Technologies
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 101
中文關鍵詞: 擴增實境POE教學策略學習成效認知負荷學習動機
外文關鍵詞: Augmented Reality, POE teaching strategies, learning effectiveness, cognitive load, learning motivation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國中化學的「物質結構」與「化學反應平衡」單元因為其抽象的概念與複雜的數學計算,為學生與教師帶來不少困擾,加上趕課壓力,許多實驗環節常常被忽略,而改以觀賞影片或背誦公式取代之,其學習成效往往不甚理想。許多研究指出,學生的學習動機與學習成效有正向關係,透過科技輔助教學已成為主要現今的主要教學模式,而且不同的教學工具對於相同主題的學習也有不同成效與認知負荷的產生。
    本研究旨在建立一個基於卡牌操作的擴增實境系統來協助學生在國中化學「元素與化合物」與「化學反應」單元的學習。本研究結合預測(Prediction)、觀察(Observation)、解釋(Explanation)的POE教學策略與合作學習等輔助教學模式,分析國中學生的學習效益、學習動機、認知負荷的影響程度,並透過科技接受度問卷來審視是否輔助工具的不同會造成學習成效的差異,以及學習工具的效能對於不同成就學生的影響。
    本研究的實驗對象分成兩組,對照組使用傳統教學模式進行授課;實驗組則使用擴增實境系統進行學習,每組50人,完整實驗時間為兩節課共90分鐘,兩組皆於教學實驗前實施成就測驗前測,實驗後再施以成就測驗後測並填寫相關問卷,實驗組另外需填寫科技接受度問卷,相關數據則使用以下方法進行統計分析,包括:單因子共變數分析、變異數分析、獨立樣本T檢定與相依樣本T檢定。經數據分析發現,雖然兩組學生在實驗後的平均成績皆有進步,但使用擴增實境系統的學生在學習成效上顯著高於對照組學生,而本系統對於低成就學生的影響大於高成就學生,由此可知不同學習模式是造成學習成就差異的主要因素。問卷結果分析顯示,實驗組的學習動機分數略高於對照組,而認知負荷程度則是略低於對照組,但皆無達到顯著差異。


    Due to its abstract concepts and complex mathematical calculations, the "Material Structure" and "Chemical Reaction Equilibrium" units of Middle School Chemistry have brought a lot of trouble to students and teachers. In addition to the pressure of rushing classes, many experimental processes are often neglected and changed. Instead of watching videos or reciting formulas, the learning effect is often less than ideal. Many studies have pointed out that there is a positive relationship between students' learning motivation and learning effectiveness. Technology-assisted teaching has become the main teaching mode today, and different teaching tools have different effects and cognitive load on the learning of the same topic.
    This research aims to establish an augmented reality system based on card manipulation to assist students in the study of "Elements and Compounds" and "Chemical Reactions" in middle school chemistry. This study combines the POE teaching strategies of Prediction, Observation, and Explanation, as well as cooperative learning and other auxiliary teaching modes, to analyze the learning efficiency, learning motivation, and cognitive load of middle school students. The questionnaire was used to examine whether different auxiliary tools would cause differences in learning outcomes, and the effects of the effectiveness of learning tools on students with different achievements.
    The experimental subjects in this study were divided into two groups. The control group was taught using the traditional teaching mode; the experimental group was taught using the augmented reality system. There were 50 people in each group. Before the teaching experiment, implement the achievement test pre-test, after the experiment, apply the achievement test post-test and fill in the relevant questionnaires. The experimental group also needs to fill in the science and technology acceptance questionnaire. The relevant data are statistically analyzed using the following methods, including: single-factor covariate analysis , analysis of variance, independent samples T test and dependent samples T test. After data analysis, it was found that although the average scores of the two groups of students improved after the experiment, the students who used the augmented reality system had significantly higher learning outcomes than the students in the control group, and the system had a greater impact on low-achieving students than high-achieving students. It can be seen that different learning modes are the main factors that cause differences in learning achievement. The analysis of the questionnaire results showed that the learning motivation score of the experimental group was slightly higher than that of the control group, and the cognitive load was slightly lower than that of the control group, but there was no significant difference.

    第一章 緒論----------------------------1 1.1 研究背景與動機---------------------1 1.2 研究目的與問題---------------------4 1.3 名詞解釋---------------------------5 1.4 研究範圍與限制---------------------7 第二章 文獻探討------------------------9 2.1 自然科教學現況與學習困境------------9 2.2 教學策略理論-----------------------11 2.3 資訊科技在教學上的應用--------------12 2.4 擴增實境---------------------------14 2.5 認知負荷---------------------------18 第三章 研究方法與設計-------------------22 3.1 研究架構---------------------------22 3.2 研究流程---------------------------23 3.3 研究對象---------------------------28 3.4 研究工具---------------------------28 3.5 資料分析---------------------------34 第四章 擴增實境輔助學習系統開發----------36 4.1 開發環境---------------------------36 4.2 系統架構---------------------------37 4.3 系統流程設計-----------------------38 4.4 系統設計---------------------------41 第五章 研究結果與發現-------------------53 5.1 學習成效差異性分析------------------53 5.2 學習動機差異性分析------------------58 5.3 科技接受度差異性分析-----------------61 5.4 認知負荷差異性分析-------------------67 第六章 結論與建議------------------------72 6.1 研究結論----------------------------72 6.2 建議與未來展望-----------------------76 參考文獻---------------------------------79 附錄一 對照組實驗詳細時間流程圖------------89 附錄二 實驗組實驗詳細時間流程圖------------90 附錄三 擴增實境輔助化學教學前測試卷--------91 附錄四 擴增實境輔助化學教學前測試卷--------93 附錄五 認知負荷問卷-----------------------95 附錄六 科技接受度問卷---------------------96 附錄七 學習動機問卷-----------------------97 附錄八 教學使用學習單(學習模式)------------98 附錄九 教學使用學習單(測驗模式)------------100

    英文文獻
    1. Alsop, S., & Watts, M. (2003). Science education and affect. International Journal of Science Education, 25(9), 1043-1047. doi:10.1080/0950069032000052180
    2. Atkinson, J. W. (1964). An introduction to motivation.
    3. Azuma, R. T. (1997). A survey of augmented reality. Presence-Virtual and Augmented Reality, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355
    4. Bandura, A., & Walters, R. H. (1977). Social learning theory (Vol. 1): Englewood cliffs Prentice Hall.
    5. Billinghurst, M., Belcher, D., Gupta, A., & Kiyokawa, K. (2003). Communication behaviors in colocated collaborative AR interfaces. International Journal of Human-Computer Interaction, 16(3), 395-423. doi:10.1207/s15327590ijhc1603_2
    6. Cheek, F. M., & Hartel, L. J. (2012). The Electronic book—Beginnings to the present. Building and managing e-book collections: A how-to-do-it manual for librarians.
    7. Chitra, A. P., & Raj, M. A. (2018). E-learning. Journal of Applied and Advanced Research, 3(S1), 11-13.
    8. Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and sociocultural perspectives in the context of developmental research. Educational Psychologist, 31(3-4), 175-190. doi:10.1207/s15326985ep3103&4_3
    9. Dünser, A., Walker, L., Horner, H., & Bentall, D. (2012). Creating interactive physics education books with augmented reality. Paper presented at the Proceedings of the 24th Australian computer-human interaction conference.
    10. Dorribo-Camba, J., Contero, M., & Ieee. (2013, Oct 23-26). Incorporating Augmented Reality Content in Engineering Design Graphics Materials. Paper presented at the 43rd Annual Frontiers in Education Conference (FIE), Univ Oklahoma, Coll Engn, Oklahoma City, OK.
    11. Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of educational research, 74(1), 59-109.
    12. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8410-8415. doi:10.1073/pnas.1319030111
    13. Gopher, D., & Braune, R. (1984). On the psychophysics of workload: Why bother with subjective measures? Human Factors, 26(5), 519-532.
    14. Habig, S. (2020). Who can benefit from augmented reality in chemistry? Sex differences in solving stereochemistry problems using augmented reality. British Journal of Educational Technology, 51(3), 629-644.
    15. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183): Elsevier.
    16. Herga, N. R., Glazar, S. A., & Dinevski, D. (2015). DYNAMIC VISUALIZATION IN THE VIRTUAL LABORATORY ENHANCES THE FUNDAMENTAL UNDERSTANDING OF CHEMICAL CONCEPTS. Journal of Baltic Science Education, 14(3), 351-365. Retrieved from <Go to ISI>://WOS:000357865200006
    17. Huang, H.-M., Rauch, U., & Liaw, S.-S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: Based on a constructivist approach. Computers & Education, 55(3), 1171-1182.
    18. Irawati, S., Hong, S., Kim, J., & Ko, H. (2008). 3D edutainment environment: learning physics through VR/AR experiences. Paper presented at the Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology.
    19. Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of computer assisted learning, 7(2), 75-83.
    20. Keller, J. M. (1987). Development and use of the ARCS model of instructional design. Journal of instructional development, 10(3), 2-10.
    21. Keller, J. M. (2009). Motivational design for learning and performance: The ARCS model approach: Springer Science & Business Media.
    22. Kozma, R. B. (1994). WILL MEDIA INFLUENCE LEARNING - REFRAMING THE DEBATE. Etr&D-Educational Technology Research and Development, 42(2), 7-19. doi:10.1007/bf02299087
    23. Kumar, A., Mantri, A., & Dutta, R. (2021). Development of an augmented reality-based scaffold to improve the learning experience of engineering students in embedded system course. Computer Applications in Engineering Education, 29(1), 244-257. doi:10.1002/cae.22245
    24. Lamb, R., Antonenko, P., Etopio, E., & Seccia, A. (2018). Comparison of virtual reality and hands on activities in science education via functional near infrared spectroscopy. Computers & Education, 124, 14-26. doi:10.1016/j.compedu.2018.05.014
    25. Linda, H. (2012). Learning theory and online technologies. New York and.
    26. Lunetta, V. N. (1998). The school science laboratory: Historical perspectives and contexts for contemporary teaching. International handbook of science education, 1, 249-262.
    27. Mayer, R. E. (2005). Cognitive theory of multimedia learning. The Cambridge handbook of multimedia learning, 41, 31-48.
    28. Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and instruction, 12(1), 107-119.
    29. Milgram, P., & Kishino, F. (1994). A TAXONOMY OF MIXED REALITY VISUAL-DISPLAYS. Ieice Transactions on Information and Systems, E77D(12), 1321-1329. Retrieved from <Go to ISI>://WOS:A1994PY87700003
    30. Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
    31. Paas, F. G., Van Merriënboer, J. J., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and motor skills, 79(1), 419-430.
    32. Patrick, H., & Yoon, C. (2004). Early adolescents' motivation during science investigation. Journal of Educational Research, 97(6), 319-328. doi:10.3200/joer.97.6.319-328
    33. Pintrich, P. R. (1989). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
    34. Rizzo, A., & Kim, G. J. (2005). A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence-Teleoperators and Virtual Environments, 14(2), 119-146. doi:10.1162/1054746053967094
    35. Rogers, C. (1969). Freedom to learn: A view of what education might become. Columbus. Ohio: Charles Merill, 358.
    36. Rogers, C. R. (1983). Freedom to learn for the 80's: Ohio, US: Merrill Publishing, 1983.
    37. Rotter, J. (1954). Social Learning and Clinical Psychology Johnson Reprint Corporation. NY: Johnson Reprint, 466.
    38. Sankey, M. D. (2003). Visual and multiple representation in learning materials: an issue of literacy.
    39. Sawyer, R. K. (2006). The new science of learning. The Cambridge handbook of the learning sciences, 1, 18.
    40. Simpson, R. D., Koballa, T., Oliver, J. S., & Crawley, F. (1994). Research on the affective dimension of science learning. Handbook of research on science teaching and learning, 1, 211-234.
    41. Sweller, J. (2011). Cognitive load theory. In Psychology of learning and motivation (Vol. 55, pp. 37-76): Elsevier.
    42. Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and instruction, 12(3), 185-233.
    43. Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
    44. Thomas, P., & David, W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes. Paper presented at the Hawaii international conference on system sciences.
    45. Thompson, A., Simonson, M. R., & Hargrave, C. (1996). Educational technology: A review of the research: Association for educational communications and technology.
    46. Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students' motivation towards science learning. International Journal of Science Education, 27(6), 639-654. doi:10.1080/0950069042000323737
    47. van Merrienboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professional education: design principles and strategies. Medical Education, 44(1), 85-93. doi:10.1111/j.1365-2923.2009.03498.x
    48. Velazquez, F. D., & Mendez, G. M. (2018). Augmented Reality and Mobile Devices: A Binominal Methodological Resource for Inclusive Education (SDG 4). An Example in Secondary Education. Sustainability, 10(10), 14. doi:10.3390/su10103446
    49. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.
    50. Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological review, 92(4), 548.
    51. Weng, C., Otanga, S., Christianto, S. M., & Chu, R. J. C. (2020). Enhancing Students' Biology Learning by Using Augmented Reality as a Learning Supplement. Journal of Educational Computing Research, 58(4), 747-770. doi:10.1177/0735633119884213
    52. White, R., & Gunstone, R. (1992). Probing Understanding
    53. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    54. Yoon, S. A., & Wang, J. (2014). Making the invisible visible in science museums through augmented reality devices. TechTrends, 58(1), 49-55.
    55. Zhou, F., Duh, H. B. L., & Billinghurst, M. (2008, Sep 15-18). Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR. Paper presented at the 7th IEEE International Symposium on Mixed and Augmented Reality, Cambridge, ENGLAND.
    56. Zhou, X., Tang, L., Lin, D., & Han, W. (2020). Virtual & augmented reality for biological microscope in experiment education. Virtual Reality & Intelligent Hardware, 2(4), 316-329.

    中文文獻
    1. 尤宜婷. (2021). 應用擴增實境於國小二年級國語部首識字補救教學之研究. (碩士). 大葉大學, 彰化縣. Retrieved from https://hdl.handle.net/11296/v96586
    2. 王美芬. (1991). 自然科錯誤概念之研究. 臺北市立師範學院學報.
    3. 王韻齡. (2016). TIMSS 國際評比臺灣學生數學, 科學成績佳, 熱情自信敬陪末座. 2016 年, 11.
    4. 朱乙仲. (2010). 擴增實境介紹與應用於數位學習環境分析. 數位典藏與學習電子報.
    5. 米芳純. (2011). 擴增實境應用於國中教學之研究-以自然與生活科技領域為例. (碩士). 國立臺東大學, 台東縣. Retrieved from https://hdl.handle.net/11296/47ka9t
    6. 吳建霖. (2020). 廣角多層光學鍍膜擴增實境光波導眼鏡. (碩士). 國立臺灣大學, 台北市. Retrieved from https://hdl.handle.net/11296/44g8gd
    7. 呂惠紅. (2010). 國小月相概念教學策略對學生學習成就與學習態度之影響研究. In: 新竹縣教育研究集刊.
    8. 杜子佑. (2012). 探討多媒體對於認知負載的影響: 資訊重複的必要性. Paper presented at the KC 2012 第八屆知識社群研討會論文集.
    9. 沈碩彬. (2008). 從認知負荷理論談英語教學之實施.
    10. 阮丞安. (2015). 高低互動擴增實境融入程式設計課程對國小學生學習之影響. (碩士). 國立臺灣科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/73sdk6
    11. 林怡資. (2014). 以 ARCS 動機模式與資訊科技融入國中地理科教學對國中生的學習動機與學習成就之研究.
    12. 林淑惠. (2006). 國小學習障礙學生在網路閱讀與紙本閱讀之閱讀理解、行為、介面、策略偏好之研究. (碩士). 國立新竹教育大學, 新竹市. Retrieved from https://hdl.handle.net/11296/668w6u
    13. 姚信徽. (2020). 立方森林—應用擴增實境於學童永續發展教育之實作. (碩士). 東海大學, 台中市. Retrieved from https://hdl.handle.net/11296/9wbm57
    14. 張春興. (1994). 教育心理學--三化取向的理論與實踐. 臺北市: 東華.
    15. 張國恩. (2000). 電腦化概念構圖在科學教育的應用, 行政院國家科學委員會補助專題研究計畫成果報告. Retrieved from
    16. 張添雄. (2003). 如何進行「自然與生活科技學習領域」有效教學. 屏東教大科學教育.
    17. 教育部. (2019). 108課綱-核心素養.
    18. 莊孟軒. (2015). 以同步多影像顯示擴增實境運用於潮汐教學對認知負荷之影響. (碩士). 國立臺灣師範大學, 台北市. Retrieved from https://hdl.handle.net/11296/w7s557
    19. 許一珍. (2018). 學童使用擴增實境之學習動機與學習成效研究-以八大行星學習為例. IJDMD, 32.
    20. 許哲宇. (2011). 國民小學自然科教師教學困擾與教學策略晤談之研究. (碩士). 國立臺中教育大學, 台中市. Retrieved from https://hdl.handle.net/11296/hnns64
    21. 陳佩怡. (2014). 以多媒體學習認知理論與擴增實境技術建置人體骨骼學習系統. (碩士). 國立臺北護理健康大學, 台北市. Retrieved from https://hdl.handle.net/11296/2ukj89
    22. 陳啟榮. (2009). 資訊科技對教育的影響. In: 北縣教育.
    23. 黃馨慧. (2013). 多模式互動嚴肅遊戲的創作與評估:以生活中化學元素的數位學習為例. (碩士). 國立臺北科技大學, 台北市. Retrieved from https://hdl.handle.net/11296/u3spfh
    24. 楊明獻. (2013). 改進國中理化課程教學--趣味科學實驗. 科學教育月刊(361), 50-62.
    25. 詹士宜. (2012). 以認知負荷取向分析數學學習困難學生在多媒體數學解題歷程之教學.
    26. 廖詠年. (2010). 擴增實境在科學教育領域中學習與應用之評析. 電腦與網路科技在教育上的應用研討會.
    27. 劉名峰. (2019). 基於情境學習之虛擬實境模擬應用於化學實驗. (碩士). 國立東華大學, 花蓮縣. Retrieved from https://hdl.handle.net/11296/rd34j2
    28. 蔡文豐, & 王玲玲. (2012). 學習環境與學習態度相關之研究. 建國科大社會人文期刊/, 31(2).
    29. 鄧芝穎. (2014). 以科技接受模型3探討資訊科技融入教學意願. (碩士). 大葉大學, 彰化縣. Retrieved from https://hdl.handle.net/11296/x7s32d
    30. 鄭伊芝. (2014). 擴增實境對天文學習影響之研究-以國小五年級星空單元為例. (碩士). 國立東華大學, 花蓮縣. Retrieved from https://hdl.handle.net/11296/axw7jt
    31. 謝平. (2018). 探索大腦的終極祕密-學習、記憶、夢和意識: 北京:科學出版社.
    32. 謝旻儕, & 黃凱揚. (2016). AR 擴增實境好好玩! 結合虛擬與真實的新科技應用: 松崗資產管理股份有限公司.
    33. 謝欣穎, & 林菁. (2013). 國小三年級學生在資訊素養融入主題探究的科學探究學習態度表現. 教育傳播與科技研究(103), 1-15.
    34. 謝慶華, 段曉林, 靳知勤, & 陳淑貞. (2016). 國中自然與生活科技學習參與量表的發展與相關因素之探討. 科學教育學刊, 24(3), 249-273.
    35. 嚴致榮. (2014). 運用學習動機理論 ARCS於數位邏輯學習成效之研究. (碩士). 國立臺南大學, 台南市. Retrieved from https://hdl.handle.net/11296/62423v

    QR CODE