簡易檢索 / 詳目顯示

研究生: 彭超
Peng Chao
論文名稱: 奈米鈀金屬活化液之製備及其在化學鍍銅製程之應用
The Study of Pd Nanoparticles and Its Application to Electroless Copper Deposition
指導教授: 王詠雲
Yung-Yun Wang
萬其超
Chi-Chao Wan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 95
中文關鍵詞: 奈米粒子無電鍍銅
外文關鍵詞: nanoparticle, palladium, electroless copper deposition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討奈米鈀粒子的製備及其在印刷電路板中作為無電鍍銅活化液的應用,奈米鈀粒子由PVP保護,本研究所選用的分散劑有水相及乙二醇相,目前兩種分散劑中合成出的奈米鈀粒子經過穿透式電子顯微鏡鑑定,都介於2至7奈米之間,且對於無電鍍銅的催化都達到一定的效果。
    乙二醇系統的優點在於合成時不用外加還原劑,而是利用以二醇本身在鹼性環境之下能夠脫水形成具有還原力的乙醛,藉以還原鈀的前趨鹽使其成為奈米粒子,但是前趨鹽對乙二醇溶解度不好,合成時間不易控制,本研究首先針對其製備過程作改良,但是發現其所轉化出來的乙醛濃度不能固定,這時原本已經成熟的水相奈米鈀系統便納入考量,水相系統具有製備方便、較高的催化活性。
    本研究的另一項重點就是克服奈米鈀系統經過微蝕之後背光不良的問題,我們試著由不同的微蝕配方找出影響背光的原因,並同時從如何提高活化液本身催化能力著手,最後發現在活化液中加入磷酸並控制酸鹼值在2.2可以克服此問題,由極譜儀的測量結果可以發現,乙二醇系統中的奈米鈀粒子很容易被酸所氧化,相對水相系統的奈米鈀粒子對酸具有較好的穩定度。
    由奈米鈀所催化的銅層,藉由X光粉末繞射儀以及掃描式電子顯微鏡的觀察,發現其和工業上錫鈀膠體所催化的銅層性質相似,如果能夠提升催化活性,對於取代錫鈀膠體將更有成效。
    本研究也針對其吸附機制作探討,藉由X光電子能譜儀找出PVP所包覆的奈米鈀粒子吸附在基板上的原因,相信對於未來增加鈀吸附量和提升催化活性有幫助。


    Pd nanoparticles stabilized by poly(vinylpyrrolidone) (PVP) have been synthesized in ethylene glycol (Pd/PVP/EG) and in water (Pd/PVP). The PVP-stabilized Pd nanoparticles (Pd-based activators) were found to hold strong potential to replace conventional activator Pd/Sn colloid for electroless copper deposition.
    However, Pd-based activators led to poor back-light performance with SPS process. Adding phosphoric acid to adjust pH of the activator would improve back-light performance with SPS process for both Pd/PVP and Pd/PVP/EG. We measured the copper deposition rate and palladium adsorption amount by inductively coupled plasma (ICP-MS). The back-light performance of FR-4 substrates with through holes was measured with optical microscope (OM). Zeta potential and X-ray photoelectron spectroscopy (XPS) results confirmed the adsorptive mechanism of Pd-based activators. We found that Pd/PVP added with acid was more easily prepared than Pd/PVP/EG. Furthermore, Pd/PVP added with acid led to higher specific activity and stability than Pd/PVP/EG even though both of them led to qualified back-light performance and similar copper deposition rate. The Pd consumption of Pd/PVP/EG was much more than that of Pd/PVP. We considered that Pd/PVP was more likely to be a candidate than Pd/PVP/EG to compete with Pd/Sn colloid. We also found aeration caused serious oxidation of Pd for acid added Pd/PVP.

    Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 Direct Plating 3 2.1.1 Pd Colloid 3 2.1.2 Carbon Black/Graphite 4 2.1.3 Conductive Polymer 5 2.2 Electroless Copper Deposition 6 2.1.1 Pd/Sn Colloid 6 2.2.2 Pd ion 9 2.2.3 Pd-based Activators 10 2.3 Synthesis of Palladium Nanoparticles in EG 13 2.3.1 Synthesis Noble Metal Compounds in EG 14 2.3.2 Synthesis Metal Particles with Polyol Method 15 2.3.3 Synthesis Parameters of Pd Particles in EG 17 2.4 The PVP Protective Mechanism for Silver Particles 19 2.5 Mechanism of Electroless Copper Deposition 21 Chapter 3 Experimental Sections 24 3.1 Materials 24 3.2 Experimental Instruments 25 3.3 Principle of Analytical Instruments 26 3.3.1 Ultraviolet-Visible Absorption Spectrometry (UV-vis) 26 3.3.2 Fourier Transform Infrared Spectrometry (FT-IR) 27 3.3.3 Transmission Electron Microscopy (TEM) 29 3.3.4 Polarography 30 3.3.5 Zeta Potential 31 3.3.6 X-ray Photoelectron Spectroscopy (XPS) 34 3.4 Pd-based Activator in EG System 35 3.4.1 Preparation of Pd/PVP/EG Nanoparticles 35 3.4.2 Synthesis of Pd/PVP/EG 35 3.4.3 Improve Pd/PVP/EG System 36 3.4.4 Pd/PVP/EG as Activator for Electroless Copper Deposition 36 3.5 Pd-based Activator in Aqueous System 38 3.5.1 Synthesis of Pd/PVP 38 3.5.2 Pd/PVP as Activator for Electroless Copper Deposition 38 3.6 Pd-based Activators Kept pH 2.2 by Adding H3PO4 39 3.7 Procedure for Conventional Pd/Sn Colloidal Activator 40 3.8 Copper Layer Analysis 41 3.9 Stability of Activators 41 3.10 Adsorption Mechanism 42 3.11 The Anions and Stability of Pd-based Activators 42 Chapter 4 Results and Discussions 43 4.1 Improve EG System 43 4.1.1 UV-vis Spectra Analysis 44 4.1.2 Particles Size Analysis 46 4.1.3 Activity of Pd/PVP/EG for Electroless Copper Deposition 48 4.1.4 The Back-light Performance Analysis 51 4.1.5 To Improve Back-light Performance with SPS Process 53 4.2 Evaluation of Pd/PVP/EG and Pd/PVP 55 4.2.1 Pd and Cu Amount of Pd/PVP/EG and Pd/PVP 59 4.2.2 Copper Deposition Rate 62 4.2.3 Stability of Pd/PVP/EG and Pd/PVP 65 4.2.4 The Consumption of Activstors 67 4.3 The Analyses of Pd/PVP 69 4.3.1 The Amount of Pd Adsorption of Various Conditioners 69 4.3.2 Stability with Aeration 71 4.3.3 SEM Images of Pd/PVP and Pd/Sn Colloid 74 4.3.4 XRD Analysis of Copper Layer 77 4.4 Adsorption Mechanism of Pd-based Activators 78 4.4.1 XPS (X-ray Photoelectron Spectroscopy) Spectra 78 4.4.2 Zeta Potential Analysis 82 4.4.3 Different Conditioning Situations 83 4.4.4 FTIR Characterization 86 4.5 Different Precursors for Pd-based Activators 87 Chapter 5 Conclusions 89 Chapter 6 Future Work 91 Chapter 7 References 92

    1. G. O. Mallory and J. B. Hadu, Electroless Plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando, Ch. 12 (1990).
    2. 揚欽雄,碩士論文,國立清華大學,中華民國台灣 (1998).
    3. E. J. M. O’Sullivan, J. Horkans, J. R. White and J. M. Roldan, IBM J. Res. Develop., 32, 5 (1998).
    4. M. Paunovic and M. Schlesinger, Fundamentals of Electrochemical Deposition, John Wiley & Sons, Inc., New York, Ch. 8 (1998).
    5. C. L. Lee, Y. Y. Wang and C. C. Wan, J. Electrochem.Soc., 150, C125 (2003).
    6. J. J. Bladon (Shipley, Crimson), U.S. Patent No.4,895,739 (1990).
    7. H. Meyer, R. J. Nichols, D. Schroer and L. Stamp, Electrochimica Acta., 39, 1325 (1994).
    8. 吳錫昭,電路板資訊,31,67 (1990).
    9. F. Polakovic and A. M. Piano (Olin Hunt, Black Hole), U.S. Patent No.4,622,108 (1986).
    10. C. E. Thorn, F. Polakovic and C. A. Mosolf (Electrochemicals, Shadow), U.S. Patent No.5,389,270 (1986).
    11. S. M. Florio, J. P. Burress, C. J. Colangelo, E. C. Couble and M. J. Kapeckas, U.S. Patent No.5,611,905 (1986).
    12. 郭茂榮,電路板資訊,61,57,(1993).
    13. 張新福,林文雄,化工,5,10,(1993).
    14. 莊達人,電路板資訊,57,46,(1993).
    15. R. M. Lukes, Plating, 51, 1066 (1964).
    16. C. R. Shipley, U. S. Patent No.3,001, 920 (1961).
    17. Takagi et al., U. S. Patent No. 6,156,385 (2000).
    18. G. Schmid and L. F. Chi, Adv. Mater., 10, 515 (1998).
    19. T. Yonezawa, K. Imamura and N. Kimizuka, Langmuir, 17, 4701 (2001).
    20. D. E. Cliffel, F. P. Zamborini, S. M. Gross and R. W. Murray, Langmuir, 16, 9699 (2000).
    21. I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara and H. Nishihara, Langmuir, 18, 1413 (2002).
    22. L. Lu, H. Wang, S. Xi and H. Zhang, J. Mater. Chem., 12, 156 (2002).
    23. A. Taleb, C. Petit and M. P. Pileni, Chem. Mater., 9, 950 (1997).
    24. A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia and L. Reven, Langmuir, 12, 1262 (1996).
    25. K. Naka, M. Yaguchi and Y. Chujo, Chem. Mater, 11, 849 (1999).
    26. C. C. Lee, C. C. Wan and Y. Y. Wang, Adv. Funct. Mater, 11, 344 (2000).
    27. H. Hirai, N. Yakura, Y. Seta and S. Hodoshima, React. Funct. Polym., 37, 121 (1998).
    28. H. P. Choo, K. Y. Liew and H. Liu, J. Mater. Chem., 12, 934 (2002).
    29. T. Teranishi and M. Miyake, Chem. Mater., 10, 594 (1998).
    30. F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina*, P-Y. Silvert and K. Tekaia-Elhsissen, NanoStructured Materials, 11, 1277–1284 (1999).
    31. K. Tekaia-Elhsissen, F. Bonet, S. Grugeon, S. Lambert and R. Herrera-Urbrina, J. Mate. Res., 14, 3703 (1999).
    32. C. Ducamp-Sanguesa, R. Herrera-Urbrina and M. Figlarz, Solid State Ionics, 63-65, 25-30 (1993).
    33. F. Fievt, J. P. Lagier and B. Blin, Solid State Ionics, 32/33, 198-205 (1989).
    34. F. Bonet, C. Guery, D. Guyomard, R. Herrera Urbina, K. Tekaia-Elhsissen and J.-M. Tarascon, International Journal of Inorganic Materials, 1, 47–51 (1999).
    35. L. K. Kurihara, NanoStructured Materials, 5, 607 (1995).
    36. 陳麗蓉,碩士論文,國立清華大學,中華民國台灣 (2004).
    37. Z. Zhang, B Zhao and L. Hu, Journal of Solid State Chemistry, 121, 105-110 (1996).
    38. K. Manzoor, S. R. Vadera, N.Kumar and T. R. N. Kutty, Solid State Communications, 129, 469-473 (2004).
    39. M. Paunovic, Modern Electroplating, 4th ed., p.645, The Electrochemical Society, New Jersey (2000).
    40. Louis Meites, “Handbook of Analytical Chemistry”, McGraw Hill Book Company (1963).
    41. Louis Meites, “Polarographic Techniques”, Inter-science Publishers (1955).
    42. Allen J. Bard, “Electroanalytical Chemistry”, Marcel Dekker, Inc., New York (1966).
    43. P. H. Rieger , “Electrochemistry” , 2nd edition p.82-85,Chapman & Hall One Penn Plaza(1993).
    44. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p6, Physical Electronics, America (1995).
    45. http://srdata.nist.gov/gateway/gateway?keyword=ESCA
    46. Y. Li and A. Mostafa, J. Phys. Chem. B, 105, 8938-8943 (2001).
    47. 楊嘉誠,碩士論文,國立清華大學,中華民國台灣 (2005).
    48. C. C. Yang, Y. Y. Wang and C. C. Wan, J. Electrochem. Soc., 152, C96 (2005).
    49. Stamp et al., U.S. Patent No.5,421,989 (1995).
    50. E. J. M. O’Sullivan et al., IBM J. RES. DEVELOP, 32, 591-602 (1988).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE