簡易檢索 / 詳目顯示

研究生: 藍凱威
Lan, Kai Wei
論文名稱: 鈷鎢氧化物靶材及薄膜製作
Cobalt Tungsten Oxide Target Fabrication and Thin Film Deposition
指導教授: 游萃蓉
Yew Tri Rung
口試委員: 李紫原
盧明昌
游萃蓉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 118
中文關鍵詞: 陶瓷製程氧化物四氧化三鈷三氧化鎢光電元件磁控濺鍍靶材
外文關鍵詞: Ceramic processing, Oxide, Cobalt oxide, Tungsten oxide, Optoelectronics, RF sputtering, Target
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用固態燒結法 (solid state sintering),製備出新穎鈷鎢氧化物靶材,並使用射頻磁控濺鍍方式以及電子束蒸鍍法,形成鈷鎢氧化物薄膜。
    本研究先以不同莫耳比WO3與Co3O4混合比例製作出生胚 (green pellets),並使用電子束蒸鍍法,沉積薄膜於玻璃基板,利用田口法設計薄膜的退火條件。從四點探針量測結果得知,在0.79 ≤ Co atomic ratio < 0.90成分區間內,薄膜的電阻率範圍落在100 (Ω·cm) ~ 102 (Ω·cm)。利用紫外/可見光吸收光譜分析,發現Co0.86W0.14Ox的吸收係數更達到105 cm-1,直接能隙在1.47 ~ 1.49 eV及2.38 eV,從X光繞射也發現Co0.86W0.14Ox的結構為Co3O4結構。驗證出Co0.86W0.14Ox的蒸鍍薄膜為一相當具有潛力的光吸收媒介。
    本研究亦依據Co0.86W0.14Ox蒸鍍薄膜成分比例,製作出鈷鎢氧化物濺鍍靶材,其未經退火之濺鍍薄膜電阻率 = 2.25 (Ω·cm),濺鍍薄膜之電阻率會隨著退火溫度上升而增加,在退火溫度400 °C下,電阻率 = 103 (Ω·cm)。利用紫外光光譜分析亦得知未經退火濺鍍薄膜,其費米能階為4.72 eV ~ 4.92 eV,價帶位置為5.37 eV ~ 5.79 eV,且費米能階在mid-gap附近。最後本研究亦製備出以鈷鎢氧化物為吸收層之P-I-N太陽能電池,從J-V curve可以發現,元件照光之後有光電流的產生,顯示鈷鎢氧化物薄膜是具有潛力應用於太陽能電池之氧化物吸收層材料。


    In this work, the novel cobalt tungsten oxide sputter target was fabricated by solid state sintering, and its thin film depoisted by E-beam deposition and RF-sputtering.
    Green pellets as source for E-beam deposition will be fabricated by mixing the different molar ratio of WO3 and Co3O4 oxide powder, and thin film was deposited on the glass substrate. The annealing conditions for thin film deposited by E-beam was designed from Taguchi method. The resuls from four point probe measurement showed that the resistivity of thin films ranged from 100 ~102 (·cm) when the Co atomic ratio in thin films measured by EDX (energy dispersive spectrometer) were in the range of 0.79≤Co atomic ratio<0.90. The optical properties were characterized by UV-Vis spectrum, the results showed that the absorption coefficient for Co0.86W0.14Ox thin film was up to 105 cm-1; moreover, the direct band-gaps were 1.47~1.49 eV and 2.38 eV. The crystal structure detected by X-ray diffraction also revealed that the possible structure of Co0.86W0.14Ox thin film was Co3O4. According to the above analysis, it suggested that Co0.86W0.14Ox thin film deposited by E-beam could serve as a light harvesting agent.
    Thus, the novel cobalt tungsten oxide sputter target based on the composition of Co0.86W0.14Ox thin film was fabricated. The resistivity of as-deposited sputtered thin film was 2.25 (Ω·cm), and the resistivity increased with higher annealing temperature. Under 400 °C annealing temperature, the resistivity of thin film was up to 103 (Ω·cm). Fermi level and the conduction band of as-deposited sputtered thin films were characterized by UPS, the results showed that the fermi level and conduction band were at 4.72 eV ~ 4.92 eV and 5.37 eV ~ 5.79 eVrespectively, meaning that fermi level was nearby the midgap. Finally, the cobalt tungsten oxide thin film depoisted by RF-sputter as absorption layer in P-I-N solar cell was fabricated. From J-V curve measruemt, there was photocurrent ocurred under illumination, strongly suggesting that the cobalt tungsten oxide thin film would be the promising absorption material for futuer photovoltaic applications.

    摘要 I Abstract III 誌謝 V 目錄 VIII 圖目錄 XI 表目錄 XVI 第一章 緒論 1 第二章 文獻回顧及原理簡介 2 2.1 以氧化物基底材料作為光電元件應用 2 2.2靶材材料系統選擇 4 2.2.1影響多元氧化物混合自由焓的熱力學參數 4 2.2.2成分元素對多元氧化物穩定相之影響 6 2.2.3晶體配位數之選擇 8 第三章 實驗流程與分析原理簡介 10 3.1 Co3O4與WO3粉末之混合生胚製備 13 3.2電子束蒸鍍鈷鎢氧化物薄膜的流程 17 3.3 鈷鎢氧化物之靶材生胚製備與燒結 22 3.4 鈷鎢氧化物之濺鍍薄膜製備 24 3.5鈷鎢氧化物P-I-N太陽能電池試作 26 3.6靶材與薄膜分析原理簡介 28 3.6.1 X光繞射分析儀 (X-ray Diffractometer) 28 3.6.2冷場發射掃描式電子顯微術暨能量散佈分析術 29 3.6.3紫外光光電子能譜分析術 31 3.6.4霍爾量測 33 3.6.5四點探針 35 3.6.6紫外/可見光吸收光譜分析術 36 3.6.7薄膜厚度輪廓量測儀 38 3.6.8 太陽光源模擬器 39 第四章 實驗結果與討論 40 4.1電子束蒸鍍Co3O4與WO3混合生胚 40 4.1.1 Co3O4與WO3不同莫耳比例混合生胚對應蒸鍍的薄膜成分 40 4.2鈷鎢氧化物E-gun蒸鍍薄膜之田口法實驗設計 42 4.2.1鈷鎢氧化物E-gun蒸鍍薄膜之電阻率分析 45 4.2.2鈷鎢氧化物E-gun蒸鍍薄膜之色度分析 47 4.3鈷鎢氧化物蒸鍍薄膜之光學性質分析 51 4.4鈷鎢氧化物蒸鍍薄膜之X光繞射分析 60 4.5鈷鎢氧化物濺鍍靶材 63 4.5.1 鈷鎢濺鍍靶材之成分與金相分析 64 4.5.2 鈷鎢濺鍍靶材之X光繞射分析 67 4.6 鈷鎢氧化物濺鍍薄膜 69 4.6.1 鍍膜氧含量對鈷鎢氧化物濺鍍薄膜電性的影響 69 4.6.2 退火溫度對鈷鎢氧化物濺鍍薄膜電性的影響 72 4.6.3 退火時間對鈷鎢氧化物濺鍍薄膜電性的影響 74 4.6.4 鈷鎢氧化物濺鍍薄膜之紫外光能譜分析 76 4.7 鈷鎢氧化物薄膜PIN太陽能電池試作 79 第五章 結論 87 第六章 未來展望 91 參考文獻 93 本研究產出之論文發表 97

    Wang, L.; Han, K.; Song, G.; Yang, X.; Tao, M. In Characterization of elec
    tro-deposited CuO as a low-cost material for high-efficiency solar cells, Photo-voltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, IEEE: 2006; pp 130-133.
    2. Koo, J.; Kim, S.; Jeon, S.; Jeon, H.; Won, Y.; Kim, Y., Characteristics of Al2O3
    thin films deposited using dimethylaluminum isopropoxide and trimethylalumi-num precursors by the plasma-enhanced atomic-layer deposition method. 2006.
    3. Nagarajan, R.; Draeseke, A.; Sleight, A.; Tate, J., p-type conductivity in CuCr₁₋
    ₓMgₓO₂ films and powders. 2001.
    4. Minami, T.; Nishi, Y.; Miyata, T., High-efficiency Cu2O-based heterojunction so-lar cells fabricated using a Ga2O3 thin film as n-type layer. Applied Physics Ex-press 2013, 6 (4), 044101.
    5. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.-H.; Wang, D., ZnO nanowire UV photodetectors with high internal gain. Nano letters 2007, 7 (4), 1003-1009.
    6. Huang, K.; Zhang, Q.; Yang, F.; He, D., Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Research 2010, 3 (4), 281-287.
    7. Ko, D.; Poeppelmeier, K.; Kammler, D.; Gonzalez, G.; Mason, T.; Williamson, D.; Young, D.; Coutts, T., Cation Distribution of the Transparent Conductor and Spinel Oxide Solution Cd1+ xIn2− xSnxO4. Journal of Solid State Chemistry 2002, 163 (1), 259-266.
    8. Andersson, A.; Johansson, N.; Broms, P.; Yu, N.; Lupo, D.; Salaneck, W. R., Flu-orine tin oxide as an alternative to indium tin oxide in polymer LEDs. Advanced Materials 1998, 10 (11), 859-863.
    9. Kim, H.; Gilmore, C.; Horwitz, J.; Pique, A.; Murata, H.; Kushto, G.; Schlaf, R.; Kafafi, Z.; Chrisey, D., Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Applied Physics Letters 2000, 76 (3), 259-261.
    10. Gaskell, D. R., Introduction to the Thermodynamics of Materials. CRC Press: 2008.
    11. Rossini, F. D.; Wagman, D. D.; Evans, W. H.; Rossini, F. D.; Rossini, F. D., Se lected values of chemical thermodynamic properties. US Government Printing Office Washington, DC: 1952; Vol. 500.
    12. Gurvich, L. V.; Veyts, I., Thermodynamic Properties of Individual Substances:
    Elements and Compounds. CRC press: 1990; Vol. 2.
    13. Bristol, P., ENTHALPY OF VAPORIZATION. J. Phys. Chem. Ref. Data 1985, 14, 1.
    14. Murty, B.; Yeh, J.-W.; Ranganathan, S., High-entropy alloys. Butter worth-Heinemann: 2014.
    15. Takeuchi, A.; Inoue, A., Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Materials Transactions, JIM 2000, 41 (11), 1372-1378.
    16. Takeuchi, A.; Inoue, A., Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Materials Transactions 2005, 46 (12), 2817-2829.
    17. Boer, F. R., Cohesion in metals: transition metal alloys. North Holland: 1988; Vol. 1.
    18. Zakutayev, A.; Paudel, T.; Ndione, P. F.; Perkins, J. D.; Lany, S.; Zunger, A.; Ginley, D. S., Cation off-stoichiometry leads to high p-type conductivity and enhanced transparency in Co2ZnO4 and Co2NiO4 thin films. Physical Review B 2012, 85 (8), 085204.
    19. Stevenson, A., Thermal vibrations and bonding in GaAs: an extended-face crys tal study. Acta Crystallographica Section A: Foundations of Crystallography 1994, 50 (5), 621-632.
    20. Campos, C.; Ersching, K.; De Lima, J.; Grandi, T.; Höhn, H.; Pizani, P., Influ ence of minor oxidation of the precursor powders to form nanocrystalline CdTe by mechanical alloying. Journal of Alloys and Compounds 2008, 466 (1), 80-86.
    21. Roy, S.; Guha, P.; Kundu, S.; Hanzawa, H.; Chaudhuri, S.; Pal, A., Characteriza tion of Cu (In, Ga) Se2 films by Raman scattering. Materials chemistry and physics 2002, 73 (1), 24-30.
    22. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A., Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517 (7), 2455-2460.
    23. Chiang, Y.-M.; Kingery, W. D.; Birnie, D. P., Physical ceramics: principles for ceramic science and engineering. J. Wiley: 1997.
    24. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell ef ficiency tables (Version 45). Progress in photovoltaics: research and applications 2015, 23 (1), 1-9.
    25. SOBOCINSKI, M.; PUTAALA, J.; JANTUNEN, H., Multilayer low-temperature co-fired ceramic systems incorporating a thick-film printing process. Printed Films: Materials Science and Applications in Sensors, Elec-tronics and Photonics 2012, 134.
    26. German, R. M., Sintering theory and practice. Sintering Theory and Practice, by
    Randall M. German, pp. 568. ISBN 0-471-05786-X. Wiley-VCH, January 1996.
    1996, 1.
    27. Lassner, E.; Schubert, W.-D., Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Springer Science & Business Media: 2012.
    28. Brauer, G., Handbook of preparative inorganic chemistry. Elsevier: 2012; Vol. 2.
    29. Khan, H. R., Nanoparticle Films. In Handbook of Thin-Film Technology, Spring-er: 2015; pp 357-374.
    30. Fung, C.-P.; Kang, P.-C., Multi-response optimization in friction properties of PBT composites using Taguchi method and principle component analysis. Jour-nal of materials processing technology 2005, 170 (3), 602-610.
    31. Drenth, J., X‐Ray Crystallography. Wiley Online Library: 2007.
    32. Goldstein, J.; Newbury, D. E.; Echlin, P.; Joy, D. C.; Romig Jr, A. D.; Lyman, C. E.; Fiori, C.; Lifshin, E., Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists. Springer Science & Busi-ness Media: 2012.
    33. Chun, W.-J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, M.; Ka wai, M.; Matsumoto, Y.; Domen, K., Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. The Journal of Physical Chemistry B 2003, 107 (8), 1798-1803.
    34. Braun, S.; Salaneck, W. R.; Fahlman, M., Energy-level alignment at organ ic/metal and organic/organic interfaces. Adv. Mater 2009, 21 (14-15), 1450-1472.
    35. van der PAUYV, L., A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 1958, 13, 1-9.
    36. Smits, F., Measurement of sheet resistivities with the four‐point probe. Bell Sys tem Technical Journal 1958, 37 (3), 711-718.
    37. Schroder, D. K., Semiconductor material and device characterization. John Wiley & Sons: 2006.
    38. Van Elp, J.; Wieland, J.; Eskes, H.; Kuiper, P.; Sawatzky, G.; De Groot, F.; Turner, T., Electronic structure of CoO, Li-doped CoO, and LiCoO2. Physical Review B 1991, 44 (12), 6090.
    39. Rafea, M. A.; Roushdy, N., Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by SILAR technique. Jour-nal of Physics D: Applied Physics 2009, 42 (1), 015413.
    40. González-Borrero, P.; Sato, F.; Medina, A.; Baesso, M.; Bento, A.; Baldissera, G.; Persson, C.; Niklasson, G. A.; Granqvist, C. G.; da Silva, A. F., Optical band-gap determination of nanostructured WO3 film. Applied Physics Letters 2010, 96 (6), 061909.
    41. Varghese, B.; Mukherjee, B.; Karthik, K.; Jinesh, K.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H., Electrical and photoresponse properties of Co3O4 nanowires. Journal of Applied Physics 2012, 111 (10), 104306.
    42. Chen, M.; Hallstedt, B.; Gauckler, L. J., Thermodynamic assessment of the Co-O system. Journal of phase equilibria 2003, 24 (3), 212-227.
    43. Alper, A., Magnesia, Alumina, Beryllia Ceramics: Fabrication, Characterization and Properties: High Temperature Oxides. Elsevier: 2012.
    44. Hvam, J.; Brodsky, M., Dispersive transport and recombination lifetime in phos-phorus-doped hydrogenated amorphous silicon. Physical Review Letters 1981, 46 (5), 371.
    45. Street, R., Technology and applications of amorphous silicon. Springer Science & Business Media: 2013; Vol. 37.
    46. Matsuura, H.; Matsuda, A.; Okushi, H.; Tanaka, K., Dark current transport mech-anism of p‐i‐n hydrogenated amorphous silicon diodes. Journal of applied phys-ics 1985, 58 (4), 1578-1583.
    47. Yim, C.; O'Brien, M.; McEvoy, N.; Riazimehr, S.; Schäfer-Eberwein, H.; Bablich, A.; Pawar, R.; Iannaccone, G.; Downing, C.; Fiori, G., Heterojunction hybrid de-vices from vapor phase grown MoS2. Scientific reports 2014, 4.
    48. Sang, L.; Liao, M.; Ikeda, N.; Koide, Y.; Sumiya, M., Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer. Applied Physics Letters 2011, 99 (16), 161109.
    49. Hsu, C.-W.; Shieh, J.-M.; Shen, C.-H.; Huang, J. Y.; Kuo, H.-C.; Dai, B.-T.; Lee, C.-T.; Pan, C.-L.; Yang, F.-L. In Stable and near-omni-directional high-efficiency amorphous Si photovoltaic devices, CLEO: Science and Innovations, Optical So-ciety of America: 2011; p CMT6.
    50. Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wisch mann, W.; Powalla, M., New world record efficiency for Cu (In, Ga) Se2 thin‐film solar cells beyond 20%. Progress in Photovoltaics: Research and Applica-tions 2011, 19 (7), 894-897.
    51. Bedia, F.; Bedia, A.; Benyoucef, B., Electrical properties of ZnO/p-Si hetero junction for solar cell application. International Journal of Materials Engineer-ing 2013, 3 (4), 59-65.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE