研究生: |
陳湘婕 Chen, Hsiang-Chieh |
---|---|
論文名稱: |
銦吸附二硫化鎢與石墨烯異質接面之二維光偵測器 In adatom with graphene and WS2 hetrosturcture photodetectors |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
闕育倫
Chueh, Yu-Lun 林彥甫 Lin, Yen-Fu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 二維 、石墨烯 、二硫化鎢 、光偵測器 、銦吸附原子 、超快響應 |
外文關鍵詞: | two dimensional, graphene, TMD, photodetectors, In adatoms, ultrafast response |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於以往二維光偵測器的文獻主要限制之一是低響應頻率(<< 1 Hz)。在追求高增益及高響應度的同時,響應速度方面幾乎沒有甚麼大幅改善。在此我們展示一新型光偵測器,具有響應度2.6x10^3 A/W相應的光增益為每一入射光子增益6.3x10^3個電子,在具備高響應度及高增益的情況下依然具有40-60 us的超快響應時間。此一新型光偵測器結構為:石墨烯-二硫化鎢-石墨烯的異質接面結構且在此結構上還有隨機覆蓋的銦吸附原子。此新型結構的光偵測器比傳統的金-二硫化鎢-金結構的光偵測器響應度差了6個數量級。光增益主要由銦吸附原子貢獻,銦原子照光產生的電子轉移至二硫化鎢通道,電洞則留於銦原子內,形成光致閘極效應,使電洞留於銦原子的時間內吸引通道內的電子循環。在靠近石墨烯狄拉克點的閘極電壓下,探測率D*達到 2.2x10^12 jones且亮暗電流比高達10^4。此元件的卓越性能歸功於高品質的石墨烯與二硫化鎢接面和銦吸附原子與二硫化鎢通道的強耦合。
One of the primary limitations of previously reported 2D photodetectors is a low frequency response (<< 1 Hz) for sensitive devices with gain. Yet, little efforts have been made to improve the photodetectors in terms of speed while maintaining high gain and responsivity. Here, we demonstrate a gain of 6.3×〖10〗^3 electrons per photon and a responsivity of 2.6×〖10〗^3 A/W while simultaneously exhibiting an ultrafast response time of 40–60 μs in a hybrid photodetector that consists of graphene-WS2-graphene junctions covered with In adatoms atop. The resultant responsivity is 6 orders of magnitude higher than that of conventional photodetectors comprising solely of Au-WS2-Au junction. The photogain is provided mainly by the adsorbed In adatoms, from which photogenerated electrons can be transferred to the WS2 channel, while holes remain trapped in In adatoms, leading to a photogating effect as electrons are recirculating during the residence of holes in In adatoms. At a gate voltage near the Dirac point of graphene, a detectivity of D^*=2.2×〖10〗^12 Jones and an ON/OFF ratio of 〖10〗^4 are achieved. The remarkable performance of the device can be attributed partly to the transparent graphene/WS2 contact and partly to the strong capacitive coupling of the In adatoms with the WS2 channel, which enables ultrafast carrier dynamics.
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” PR,vol. 74, pp. 230–231, July 1948.
[2] “the first transistor,” http:// www.spacedaily.com/ news/ space-electronics-03c.html, 2018.
[3] “FET structure,” http:// programmermagazine.github.io/ y201410/ htm/ science2.html, 2014.
[4] “SiIC,” http:// ds-wordpress.haverford.edu/ bitbybit/ bit-by-bit-contents/chapter-eight/8-1-early-research-in-electronics/.
[5] “moor’s law,”https://www.explainthatstuff.com/integratedcircuits.html,2009.
[6] “FinFET,” https:// www.samsung.com/ semiconductor/ minisite/ exynos/newsroom/ blog/ the-easy-guide-to-a-semiconductor-why-the-10nm-finfetprocess/,2011-2018.
[7] “gate all around,” https:// www.semiwiki.com/ forum/ content/ 4964-highvolume-manufacturing-10-nm-below-technology-riendship.html, 2016.
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomicallythin carbon films,” Science, vol. 306, p. 666, Oct. 2004.
[9] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey,A. Molle, and D. Akinwande, “Silicene field-effect transistors operating at room temperature,” Nature Nanotechnology, vol. 10, p. 227, Feb. 2015.
[10] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang,“The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, p. 263, Mar. 2013.
[11] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier,A. Seabaugh, S. K. Banerjee, and L. Colombo, “Electronics based on two dimensional materials,” Nature Nanotechnology, vol. 9, p. 768, Oct. 2014.
[12] “photoconductor,” https://slideplayer.com/slide/4929945/, 2015.
[13] “graphene orbital,” https://atomselectrons.com/2012/03/26/alkenes/.
[14] J.-L. Liao, “高品質石墨烯透明導電膜之製備及應用,” Master’s thesis, 國立清華大學, 2013.
[15] “Introduction to graphene-based nanomaterials: From electronic structure to quantum transport luis e.f. foa torres, stephan roche, and jean-christophe charlier:Cambridge university press, 2014 419 pages, isbn 978-1-107-03083-1,”MRS Bulletin, vol. 40, no. 5, pp. 452–452, 2015.
[16] J. Yao, Y. Sun, M. Yang, and Y. Duan, “Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine,” J. Mater. Chem., vol. 22, no. 29, pp. 14313–14329, 2012.
[17] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials,vol. 6, p. 183, Mar. 2007.
[18] J.-N. Fuchs, “Dirac fermions in graphene and analogues:magnetic field and topological properties,” June 2013.
[19] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Communications, vol. 143, pp. 47–57, July 2007.
[20] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in graphene,” The European Physical Journal B - Condensed Matter and Complex Systems, vol. 51, pp. 157–160, May 2006.
[21] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” PRX, vol. 4, p. 031005, July 2014.
[22] C. Ataca, H. Şahin, and S. Ciraci, “Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure,” J. Phys. Chem.C, vol. 116, pp. 8983–8999, Apr. 2012.
[23] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S.
Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, p. 699, Nov. 2012.
[24] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” PRB, vol. 83, p. 245213, June 2011.
[25] C.-C. Lu, Y.-C. Lin, Z. Liu, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, “Twisting bilayer graphene superlattices,” ACS Nano, vol. 7, pp. 2587–2594, Mar. 2013.
[26] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growthof large-area graphene films from metal-carbon melts,”Journal of Applied Physics, vol. 108, p. 094321, Dec. 2018.
[27] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol. 473, pp. 51–87, Apr. 2009.
[28] Y. A. Wu, Y. Fan, S. Speller, G. L. Creeth, J. T. Sadowski, K. He, A. W. Robertson, C. S. Allen, and J. H. Warner, “Large single crystals of graphene on melted copper using chemical vapor deposition,” ACS Nano, vol. 6, pp. 5010–5017, June 2012.
[29] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu,Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano, vol. 7, pp. 8963–8971, Oct. 2013.
[30] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2757–2785, 2015.
[31] A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and WS2,” PRB, vol. 84, p. 155413, Oct. 2011.
[32] C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Adv. Funct. Mater., vol. 15, pp. 1197–1208, Jan. 2019.
[33] W.-Y. Wu, S. Chakrabortty, C. K. L. Chang, A. Guchhait, M. Lin, and Y. Chan, “Promoting 2D growth in colloidal transition metal sulfide semiconductor nanostructures via halide ions,” Chem. Mater., vol. 26, pp. 6120–6126, Nov. 2014.
[34] U. Chandni, E. A. Henriksen, and J. P. Eisenstein, “Transport in indiumdecorated graphene,” PRB, vol. 91, p. 245402, June 2015.
[35] C.-H. Yeh, Z.-Y. Liang, Y.-C. Lin, T.-L. Wu, T. Fan, Y.-C. Chu, C.-H. Ma, Y.-C. Liu, Y.-H. Chu, K. Suenaga, and P.-W. Chiu,“Scalable van der waals heterojunctions for high-performance photodetectors,” ACS Appl. Mater. Interfaces,vol. 9, pp. 36181–36188, Oct. 2017.
[36] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for MOS transistors,” in 2000 International Semiconductor Conference. 23rd Edition. CAS 2000 Proceedings (Cat. No.00TH8486),vol. 1, pp. 371–374 vol.1, 10-1.
[37] C.-H. Yeh, Y.-W. Lain, Y.-C. Chiu, C.-H. Liao, D. R. Moyano, S. S. H. Hsu,and P.-W. Chiu, “Gigahertz flexible graphene transistors for microwave integrated circuits,” ACS Nano, vol. 8, pp. 7663–7670, Aug. 2014.
[38] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G.de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene-quantum dot phototransistors with ultrahigh gain,” Nature Nanotechnology, vol. 7, p. 363, May 2012.
[39] D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens, and G. Konstantatos, “Hybrid 2D-0D MoS2-PbS quantum dot photodetectors,”Adv. Mater., vol. 27, pp. 176–180, Jan. 2019.
[40] D. Tsai, D. Lien, M. Tsai, S. Su, K. Chen, J. Ke, Y. Yu, L. Li, and J. He, “Trilayered MoS2 metal -semiconductor-metal photodetectors: Photogain and radiation resistance,” IEEE Journal of Selected Topics in Quantum Electronics,vol. 20, no. 1, pp. 30–35, Jan.
[41] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial fermi level pinning at metal-MoS2 interfaces,” Nano Lett., vol. 14, pp. 1714–1720, Apr. 2014.
[42] W. Liu, D. Sarkar, J. Kang, W. Cao, and K. Banerjee, “Impact of contact on the operation and performance of back-gated monolayer MoS2 field-effecttransistors,” ACS Nano, vol. 9, pp. 7904–7912, Aug. 2015.
[43] N. Myoung, K. Seo, S. J. Lee, and G. Ihm, “Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures,” ACS Nano, vol. 7, pp. 7021–7027, Aug. 2013.
[44] H. Tan, Y. Fan, Y. Zhou, Q. Chen, W. Xu, and J. H. Warner, “Ultrathin 2D photodetectors utilizing chemical vapor deposition grown WS2 with graphene electrodes,” ACS Nano, vol. 10, pp. 7866–7873, Aug. 2016.
[45] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2,” Nature Nanotechnology, vol. 8, p. 497, June 2013.
[46] W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li,“High-gain phototransistors based on a CVD MoS2 monolayer,” Adv. Mater.,vol. 25, pp. 3456–3461, Jan. 2019.
[47] N. Huo, S. Gupta, and G. Konstantatos, “MoS2-HgTe quantum dot hybrid photodetectors beyond 2 μm,” Adv. Mater., vol. 29, p. 1606576, Jan. 2019.
[48] D. Kufer and G. Konstantatos, “Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed,” Nano Lett., vol. 15,pp. 7307–7313, Nov. 2015.
[49] N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez,S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla,S. Talapatra, H. Terrones, and M. Terrones, “Photosensor device based on few-layered WS2 films,” Adv. Funct. Mater., vol. 23, pp. 5511–5517, Jan.2019.
[50] J. Xia, X. Huang, L.-Z. Liu, M. Wang, L. Wang, B. Huang, D.-D. Zhu, J.-J. Li,C.-Z. Gu, and X.-M. Meng, “CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors,” Nanoscale, vol. 6, no. 15, pp. 8949–8955, 2014.