簡易檢索 / 詳目顯示

研究生: 陳義麟
Chen, Yi-Lin
論文名稱: 完備光滑可測度空間上的函數理論
The Function Theory on Complete Smooth Metric Measure Spaces
指導教授: 宋瓊珠
Sung, Chiung-Jue
口試委員: 高淑蓉
Kao, Shu-Jung
蕭育如
Syau, Yu-Ru
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 32
中文關鍵詞: 拉普拉斯算子比較體積比較定理梯度估計分解定理
外文關鍵詞: Laplcian comparison, volume comparison, Bakry-Emery Ricci curvature
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文我們先研讀在非負曲率光滑可測度空間上的函數的梯度估計。並利用這個梯度估計證明在幾何維方程中Liouville型的定理結果以及空間的分解定定理。


    In this note, we introduce the gradient estimate on smooth metric measure spaces with nonnegative Bakry-\'Emery Ricci curvature. We also apply such estimate to prove Liouville type theorem and splitting theorem in geometric partial differential equations.

    1. Introduction ...................2 2. Preliminary ....................3 3. Main Theorem ..................13 4. Spitting Theorem ..............22 Appendix A. Proof of Bochner Formula ................27 Appendix B. Proof of Laplician Comparison Theorem ...28 Appendix C. Moser Iteration Scheme ..................29 Reference ........................31

    K. Brighton, A Liouville-Type for Smooth Metric Measrue Spaces, arXiv:1006.0751.

    S. Y. Cheng and S. T. Yau, Differential Equations on Riemannian Manifolds and Their Geometric Applications, Comm. Pure Appl. Math. 27 (1975), 333-354.

    M. do~Carmo, Riemannian Geometry, translated by F. Flaherty,
    Birhauser Boston, 1992.

    F. Fang, X.-D. Li and Z. Zhang, Two Generalizations of Cheenger-Gromoll Splitting Theorem via Bakry-Emery Ricci Curvature, Annales de l'Institut Fourier, 59 no.2 (2009), 563-573.

    P. Li, Harmonic Functions and Applications to Complete Manifolds, lecture notes.

    P. Li and L-F. Tam, Linear Growth Harmonic Functions on A Complete Manifold, J. Diff. Geom. 29 (1989), 421-425.

    P. Li and J. Wang, Connectedness at infinity of Complete K\"ahler Manifolds, Amer. J. Math. 131 (2009), 771-817.

    P. Li and J. Wang, Complete Manifold with Positive Spectrum, J. Diff. Geom. 58 (2001), 501-534.

    P. Li and J. Wang, Complete Manifold with Positive Spectrum, II. J. Diff. Geom. 62 (2002), 143-162.

    P. Li and J. Wang, Connectedness at Infinity of Complex Kahler Manifolds, Amer. J. Math. 131 (2009), 771-817.

    X. D. Li, Liouville Theorems for Symmetric Diffusion Operators on Complete Manifolds, J. Math. Pures Appl., (2005), 1295-1361.

    O. Munteanu and J. Wang, Smooth Metric Measure Spaces with Nonnegative Curvature, Comm. Anal. Geom. 19 (2011), no. 3, 451-486.

    L. Saloff-Coste, A Note on Poincare, Sobolev, and Harnack inequalities, IMRN 2 (1992), 27-38.

    L. Saloff-Coste, Aspects of Sobolev-Type Inequalities, London Mathematical Society Lecture Notes Series, 2001.

    R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press of Boston, 1994.

    G. Wei and W. Wylie, Comparison Geometry for the Bakry-Emery Ricci tensor, J. Diff. Geom. (2009), 377-405.

    S. T. Yau, Harmonic Functions on Complete Riemannian Manifolds, Comm. Pure Appl. Math 28 (1975), 201-228.

    S. T. Yau, Some Function-Theoretic Properties of Complete Riemannian Manifolds and Their Applications to Geometry, Indiana Math. J. 25 (1976), 659-670.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE