研究生: |
郭少璇 Guo, Shao-Syuan |
---|---|
論文名稱: |
以步進式掃描傅立葉轉換紅外光譜儀研究不同表面修飾金奈米棒經光激發後之輻射冷卻過程 Monitoring the radiative cooling processes of the surface-modified gold nanorods upon pulsed infrared photoexcitation with a step-scan Fourier-transform spectrometer |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
陳仁焜
Chen, Jen-Kun 劉靜萍 Liu, Ching-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 金奈米棒 、輻射緩解 、熱紅外放光 、傅立葉轉換紅外光譜儀 、表面修飾 |
外文關鍵詞: | gold nanorods, radiative cooling process, thermal infrared emission, Fourier-transform infrared spectrometer, surface modification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米棒(AuNRs)的長軸表面電漿共振消光波長可藉由增加長寬比調變至近紅外光區,當吸收近紅外光後得轉換為熱能並釋放,故金奈米棒常被視為一光致加熱源,應用於光熱治療之領域,並藉由金奈米棒的表面修飾可提高生物相容性與降低細胞毒性。隨著利用金奈米棒光熱轉換的特性及其表面修飾於生醫領域的發展,促使科學家進一步研究不同表面修飾金奈米棒的熱傳導過程。在本研究中,吾人將藉由時間解析傅立葉轉換紅外光譜儀擷取金奈米棒經雷射激發後的熱紅外放光,並分析修飾不同表面保護基之金奈米棒的紅外熱輻射緩解過程。
吾人以雷射擊發頻率10 Hz、脈衝寬度70 µs、能量密度152 mJ cm-2、波長為1064 nm的長脈衝雷射激發四種不同表面保護基(溴化十六烷基三甲胺CTAB、聚苯乙烯磺酸鈉PSS、聚乙二醇單甲醚硫醇mPEG5000與二氧化矽SiO2)之金奈米棒,發現修飾剛性保護基SiO2之金奈米棒(AuNR@SiO2)經雷射激發後的熱緩解時間較長,可達800 µs。若將所有金奈米棒樣品之紅外放光光譜與標準黑體輻射光譜比較,兩種光譜的強度差異有一部分貢獻於各保護基之振動特徵,且AuNR@SiO2具有較多的貢獻來自於Si-O-Si不對稱伸縮振動模(1000-1250 cm-1)。吾人推測金奈米棒的熱緩解過程除了以黑體輻射釋放能量外,尚有可能將能量傳遞至保護基,再經由輻射振動緩解釋放能量。此外,當表面保護基以共價鍵形式與金奈米棒鍵結,於雷射激發的過程中,保護基不易因溫度上升而離開金奈米棒表面,故不易造成金奈米棒聚集而產生形變。因此,步進式時間解析傅立葉轉換紅外放光光譜法將可延伸至研究其他表面修飾金屬奈米材料的輻射緩解過程。
Gold nanorods (AuNRs) have been extensively utilized in the photothermal therapeutic treatments. The longitudinal surface plasmonic bands of AuNRs with specific aspect ratios at near infrared region fit in the optical therapeutic window for deeper light penetration. Generally, the surface modification of AuNRs is essential for the biological application to increase the biocompatibility and to reduce the toxicity. Accordingly, the studies of the thermalization of different surface-modified AuNRs draw a lot of attentions. In this work, the transient thermal infrared emissions of AuNRs capped with various materials upon pulsed excitation of their longitudinal surface plasmonic bands were collected with a time-resolved Fourier-transform spectrometer.
Upon photoexcitation with a pulsed infrared laser, the thermal infrared emission contours of AuNRs capped with the rigid material, SiO2, differed from those coated with soft materials, including CTAB, PSS and mPEG. AuNR@SiO2 possessed a significantly prolonged infrared emission for 800 µs. Moreover, comparing the emission contours of AuNRs with the blackbody radiation spectra, parts of the difference at low wavenumbers were attributed to the specific vibrational modes of the capping materials. Among them, the greatest difference between AuNR@SiO2 contour and blackbody radiation contour attributed to Si-O-Si vibrational mode at ca. 1100 cm-1 was observed. As a result, the photothermal energy of AuNRs can be thermalized radiatively via blackbody radiation and might be transferred to capping materials, followed by the radiative or non-radiative relaxation of the capping materials. Furthermore, the capping materials attached to the AuNRs surface via covalent bond prevent further aggregations of AuNRs during excitation. Thus, the step-scan time-resolved Fourier-transform infrared emission spectroscopy can be extended to study the photothermal processes of other metal nanostructures capped with various materials.
第一章
[1] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212-4217.
[2] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668-677.
[3] Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293-346.
[4] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rew. 2006, 35, 209.
[5] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[6] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Márzan, L. M.; de Abajo, F. J. G. Chem. Soc. Rew. 2008, 37, 1792-1805.
[7] Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8-24.
[8] Chen, Y.; Ming H. Photonic Sensors 2012, 2, 37-49.
[9] Cao, J.; Sun, T.; Grattan, K. T. V. Sens. Actuators, B 2014, 195, 332-351.
[10] Underwood, S.; Mulvaney, P. Langmuir 1994, 10, 3427-3430.
[11] Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord.
Chem. Rev. 2005, 249, 1870-1901.
[12] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238-7248.
[13] Cao, J.; Sun, T.; Grattan, K. T. V. Sens. Actuators. B 2014, 195, 332-351.
[14] Govorov, A. O.; Richardson, H. H. Nano Today 2007, 2, 30-38.
[15] Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Phys. Rev. Lett. 2000, 85, 2200-2203.
[16] Govorov, A. O.; Zhang, W.; Skeini, T.; Richardson, H.; Lee, J.; Kotov, N. A. Nanoscale Res. Lett. 2006, 1, 84-90.
[17] Baffou, G.; Quidant, R.; Girard, C. Appl. Phys. Lett. 2009, 94, 153109.
[18] O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer Lett. 2004, 209, 171-176.
[19] Rengan, A. K.; Bukhari, A. B. Nano Lett. 2015, 15, 842-848.
[20] Bendix, P. M.; Nader, S.; Reihani, S.; Oddershede, L. B. ACS Nano 2010, 4, 2256-2262.
[21] Hogan, N. J.; Urban, A. S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N. J. Nano Lett. 2014, 14, 4640-4645.
[22] Shanmugam, V.; Selvakumar, S.; Yeh, C. S. Chem. Soc. Rev. 2014, 43, 6254-6287.
[23] Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J. L.; RodriGuez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530.
[24] Boriskina, S. V.; Ghasemi, H.; Chen, G. Mater. Today 2013, 16, 375-386.
[25] Arbouet, A.; Voisin, C.; Christofilos, D.; Langot, P.; Del Fatti, N.; Vallée, F.; Lermé, J.; Celep, G.; Cottancin, E.; Gaudry, M.; Pellarin, M.; Broyer, M.; Maillard, M.; Pileni, M. P.; Treguer, M. Phys. Rev. Lett. 2003, 90, 177401.
[26] Nisoli, M.; De Silvestri, S.; Cavalleri, A.; Malvezzi, A. M.; Stella, A.; Lanzani, G.; Cheyssac, P.; Kofman, R. Phys. Rev. B 1997, 55, R13424-R13427.
[27] Hartland, G. V. J. Chem. Phys. 2002, 116, 8048-8055.
[28] Crut, A.; Maioli, P.; Del Fatti, N.; Vallée, F. Phys. Rep. 2015, 549, 1-43.
[29] Stoll, T.; Maioli, P.; Crut, A.; Burgin, J.; Langot, P.; Pellarin, M.; Sánchez-Iglesias, A.; Rodríguez-González, B.; Liz-Marzán, L. M.; Del Fatti, N.; Vallée, F. J. Phys. Chem. C 2015, 119, 1591-1599.
[30] Juvé, V.; Scardamaglia, M.; Maioli, P.; Crut, A.; Merabia, S.; Joly, L.; Del Fatti, N.; Vallée, F. Phys. Rev. B 2009, 80, 195406.
[31] Stoll, T.; Maioli, P.; Crut, A.; Rodal-Cedeira, S.; Pastoriza-Santos, I.; Vallée, F.; Del Fatti, N. J. Phys. Chem. C 2015, 119, 12757-12764.
[32] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315.
[33] Muskens, O. L.; Del Fatti, N.; Vallée, F. Nano Lett. 2006, 6, 552-556.
[34] Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 8503-8512.
[35] Abadeer, N. S.; Brennan, M. R.; Wilson,W. L.; Murphy, C. J. ACS Nano 2014, 8, 8392-8406.
[36] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotechnol. 2009, 4, 710-711.
[37] Jang, B.; Park, J.-Y.; Tung, C.-H.; Kim, I.-H.; Choi, Y. ACS Nano 2011, 5, 1086-1094.
[38] Deán-Ben, X. L.; Gottschalk, S.; Mc Larney B.; Shohamc, S.; Razansky, D. Chem. Soc. Rev. 2017, 46, 2158-2198.
[39] Vankayala, R.; Huang, Y.-K.; Kalluru, P.; Chiang, C.-S.; Hwang, K.-C. Small 2014, 10, 1612-1622.
[40] Qiu, W.-X.; Liu, L.-H.; Li, S.-Y.; Lei, Q.; Luo, G.-F.; Zhang, X.-Z. Small 2017, 13, 1603956.
[41] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115-2120.
[42] Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J. Chem. Commun. 2010, 46, 1479-1481.
[43] Chan, M.-H.; Chen, S.-P.; Chen, C.-W.; Chan, Y.-C.; Lin, R.-J.; Tsai, D.-P.; Hsiao, M.; Chung, R.-J.; Chen, X.; Liu, R-S. J. Phys. Chem. C 2018, 122, 2402-2412.
[44] Hu, B.; Zhang, L.-P.; Chen, X.-W.; Wang, J.-H. Nanoscale, 2013, 5, 246-252.
[45] Zhang, T.; Ding, Z.; Lin, H.; Cui, L.; Yang, C.;Li, X.; Niu, H.; An, N.; Tong, R.; Qu, F. Eur. J. Inorg. Chem. 2015, 2277-2284.
[46] Liu, J.; Detrembleur, C.; De Pauw-Gillet, M.-C.; Mornet, S.; Jérôme, C.; Duguet, E. Small 2015, 11, 2323-2332.
[47] Hauck, T. S.; Ghazani, A. A.; Chan, W. C. W. Small 2008, 4, 153-159.
[48] Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Small 2009, 5, 701-708.
[49] Oladipo, A. O.; Oluwafemi, O. S.; Songca, S. P.; Sukhbaatar, A.; Mori, S.; Okajima, J.; Komiya, A.; Maruyama, S.; Kodama, T. Sci. Rep. 2017, 7, 45459.
[50] Hu, M.; Hartlan, G. V. J. Phys. Chem. B 2002, 106, 7029-7033.
[51] Schmidt, A. J.; Alper, J. D.; Chiesa, M.; Chen, G.; Das, S. K.; Hamad-Schifferli, K. J. Phys. Chem. C 2008, 112, 13320-13323.
[52] Huang, J.; Park, J.; Wang, W.; Murphy, C. J.; Cahill, D. G. ACS Nano 2013, 7, 589-597.
[53] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Horst Weller, H.; Alivisatos, A. P. ACS Nano 2016, 10, 2144-2151.
[54] Chen, Y.-S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Nano Lett. 2011, 11, 348-354.
第二章
[1] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212-4217.
[2] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668-677.
[3] Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293-346.
[4] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rew. 2006, 35, 209.
[5] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[6] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Márzan, L. M.; de Abajo, F. J. G. Chem. Soc. Rew. 2008, 37, 1792-1805.
[7] Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8-24.
[8] Chen, Y.; Ming H. Photonic Sensors 2012, 2, 37-49.
[9] Cao, J.; Sun, T.; Grattan, K. T. V. Sens. Actuators, B 2014, 195, 332-351.
[10] Hu, M.; Chen, J.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[11] Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073-3077.
[12] Sun, C.-K.; Vallée F.; Acioli, L. H.; Ippen, E. P.; Fujimoto, J. G. Phys. Rev. B 1994, 50, 15337-15348.
[13] Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 8410-8426.
[14] Link, S.; Burda, C.; Wang, Z. L.; El-Sayed, M. A. J. Chem. Phys. 1999, 111, 1255-1264.
[15] Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Phys. Rev. B 2000, 61, 6086-6090.
[16] El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257-264.
[17] Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029-7033.
[18] Link, S.; El-Sayed, M. A. Annu. Rev. Phys. Chem. 2003, 54, 331-366.
[19] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315.
[20] Huang, W.; Qian, W.; El-Sayed, M. A. J. Phys. Chem. C 2007, 111, 10751-10757.
[21] Ekici, O.; Harrision, R. K.; Durr, N. J.; Eversole, D. S. E.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[22] Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 8503-8512.
[23] Werner, D.; Hashimoto, S. J. Phys. Chem. C 2011, 115, 5063-5072.
[24] Lukianova-Hleb, E. Y.; Anderson, L. J. E.; Lee, S.; Hafner, J. H.; Lapotko, D. O. Phys. Chem. Chem. Phys. 2010, 12, 12237-12244.
[25] Voisin, C.; Christofilos, D.; Del Fatti, N.; Vallée, F.; Prével, B.; Cottancin, E.; Lermé, J.; Pellarin, M.; Broyer, M. Phys. Rev. Lett. 2000, 85, 2200-2203.
[26] Kumarasinghe, C. S.; Premaratne, M.; Bao, Q.; Agrawa G. P. Sci. Rep. 2015, 5, 12140.
[27] Zimmermann, J.; Zeug, A.; Röder, B. Phys. Chem. Chem. Phys. 2003, 5, 2964-2969.
[28] Guidelli, E. J.; Ramos, A. P.; Baffa, O. Nanotechnology 2016, 27, 015503.
[29] Chen, X.; Chen, Y.; Yan, M.; Qiu, M. ACS Nano 2012, 6, 2550-2557.
[30] Pollack, G. L. Rev. Mod. Phys. 1969, 41, 48-81.
[31] Juvé, V.; Scardamaglia, M.; Maioli, P.; Crut, A.; Merabia, S.; Joly, L.; Del Fatti, N.; Vallée, F. Phys. Rev. B 2009, 80, 195406.
[32] Hu, M.; Wang, X.; Hartland, G. V.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Chem. Phys. Lett. 2003, 372, 767-772.
[33] Kwon, O.-H.; Lee, S.; Jang, D.-J. Eur. Phys. J. D 2005, 34, 243-246.
[34] Glaeske, M.; Kumar, M.; Bisswanger, T.; Vaitiekenas, S.; Soci, C.; Narula, R.; Bruno, A.; Setaro, A. Nanotechnology 2017, 28, 255202.
[35] Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Nano Lett. 2009, 9, 1139-1146.
[36] Jiang, K.; Smith, D. A.; Pinchuk, A. J. Phys. Chem. C 2013, 117, 27073-27080.
[37] An, L.; Wang, Y.; Tian, Q.; Yang, S. Materials 2017, 10, 1372.
[38] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sensors and Actuators B 2018, 255, 1285-1290.
[39] Gally, J. A.; Edelman, G. Biochim. Biophys. Acta 1962, 60, 499-509.
[40] Chiu, M.-J.; Chu, L.-K. Phys. Chem. Chem. Phys. 2015, 17, 17090-17100.
[41] Chen, Y.-S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; okolov, K.; Emelianov, S. Opt. Express 2010, 18, 8867-8878.
[42] Jokerst, J. V.; Cole, A. J.; de Sompel, D. V.; Gambhir, S. S. ACS Nano 2012, 6, 10366-10377.
[43] Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 878-885.
[44] Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y. Langmuir 2008, 24, 12026-12031.
[45] Schmidt, A. J.; Alper, J. D.; Chiesa, M.; Chen, G.; Das, S. K.; Hamad-Schifferli, K. J. Phys. Chem. C 2008, 112, 13320-13323.
[46] Huang, J.; Park, J.; Wang, W.; Murphy, C. J.; Cahill, D. G. ACS Nano 2013, 7, 589-597.
[47] Wu, X.; Ni, Y.; Zhu, J.; Burrows, N. D.; Murphy, C. J.; Dumitrica, T.; Wang, X. ACS Appl. Mater. Interfaces 2016, 8, 10581-10589.
[48] Alper, J.; Hamad-Schifferli, K. Langmuir 2010, 26, 3786-3789.
[49] Tervo, E. J.; Adewuyi, O. S.; Hammonds, Jr. J. S.; Cola, B. A. Mater. Horiz., 2016, 3, 434-441.
[50] Neogi, S.; Reparaz, J. S.; Pereira, L. F. C.; Graczykowski, B.; Wagner, M. R.; Sledzinska, M.; Shchepetov, A.; Prunnila, M.; Ahopelto, J.; Sotomayor-Torres, C. M.; Donadio, D. ACS Nano 2015, 9, 3820-3828.
[51] Käding, O. W.; Skurk, H.; Goodson, K. E. Appl. Phys. Lett. 1994, 65, 1629-1631.
[52] Ha, T.-J.; Park, H.-H.; Jang, H. W.; Yoon, S.-J.; Shin, S.; Cho, H. H. Microporous Mesoporous Mater. 2012, 158, 123-128.
第三章
[1] Faust, B. Modern Chemical Techniques: An Essential Reference for Students and Teachers. Royal Society of Chemistry, 1997, 92-115.
[2] Harvey, D. Modern Analytical Chemistry. McGraw-Hill, 2000, 382.
[3] Webb, J. A.; Bardhan, R. Nanoscale, 2014, 6, 2502-2530.
[4] Schumacher, E. F. Am. Lab. 2014, 46, 24.
[5] 林昆霖 肉眼看不見的奈米級材料及元件檢測分析就靠穿透式電子顯微鏡. 奈米通訊Nano communication 2003, 20, 34-38.
[6] 陳建淼; 洪連輝 穿透式電子顯微鏡. 科學Online 科技部高瞻自然科學教學資源平台 2009.
[7] 羅聖全 研發奈米科技的基本工具之一 電子顯微鏡介紹-TEM. 小奈米大世界.
[8] Wartewig, S. IR and Raman Spectroscopy:Fundamental Processing; Wiley-VCH, 2005.
[9] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd.; Wiley, 2007.
[10] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy; Wiley-VCH, 2011.
[11] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques; Elsevier, 2005.
[12] Fellgett, P. B. J. Phys. Radium 1958, 19, 187-191.
[13] Jacquinot, P. J. Opt. Soc. Am. 1954, 44, 761-765.
[14] Connes, J. J. Phys. Radium 1958, 19, 197-208.
[15] Koenig, J. L. Appl. Spectrosc. 1975, 29, 293-308.
[16] Mertz, L. Transformations in Optics; Wiley, 1965.
[17] Mertz, L. Infrared Phys. 1967, 7, 17-23.
[18] Jiang, E. Y. Advanced FT-IR Spectroscopy; Thermo Electron Corporation, 2003.
[19] Uhmann, W.; Becker, A.; Taran, C.; Siebert, F. Appl. Spectrosc. 1991, 45, 390-397.
[20] Chu, L.-K.; Lee, Y.-P. Instrum. Today 2009, 31, 27-35.
[21] Hu, X.; Frei, H.; Spiro, T. G. Biochemistry 1996, 35, 13001-13005.
[22] Kember, D.; Sheppard, N. Appl. Spectrosc. 1975, 29, 496-500.
[23] Kember, D.; Chenery, D. H.; Sheppard, N.; Fell, J. Spectrochim. Acta 1979, 35A, 455-459.
[24] Hartland, G. V.; Qin, D.; Dai, H. L. J. Chem. Phys. 1994, 100, 7832-7835.
[25] Yeh, P. S.; Leu, G. H.; Lee, Y. P.; Chen, I. C. J. Chem. Phys. 1995, 103, 4879-4886.
[26] Geerts, Y.; Steyaert, M.; Sansen, W. M. C. Design of Multi-Bit Delta-Sigma A/D Converters; Springer Science & Business Media, 2002.
[27] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.
[28] Cong, B.; Kan, C.; Wang, H.; Liu, J.; Xu, H.; Ke, S. J. Mat. Sci. Chem. Eng. 2014, 2, 20-25.
[29] Abadeer, N. S.; Brennan, M. R.; Wilson,W. L.; Murphy, C. J. ACS Nano 2014, 8, 8392-8406.
[30] Ma, Y.; Zhou, J.; Shu, L.; Li, T.; Petti, L.; Mormile, P. J Nanopart Res. 2014, 16, 2439.
[31] Didychuk, C. L.; Ephrat,P.; Belton, M.; Carson, J. J. L Proc. SPIE 2008, 6856, 68560M.
第四章
[1] Brioude, A.; Jiang, X. C.; Pileni, M. P. J. Phys. Chem. B 2005, 109, 13138-13142.
[2] González-Rubio, G.; Guerrero-Martínez, A.; Liz-Marzán, L. M. Acc. Chem. Res. 2016, 49, 678-686.
[3] Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19, 9065-9070.
[4] Meena, S. K.; Sulpizi, M. Langmuir 2013, 29, 14954-14961.
[5] Casas, J.; Venkataramasubramani, M.; Wang, Y.; Tang, L. Biosens. Bioelectron. 2013, 49, 525-530.
[6] Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 878-885.
[7] Abadeer, N. S.; Brennan, M. R.; Wilson,W. L.; Murphy, C. J. ACS Nano 2014, 8, 8392-8406.
[8] La-Salvia, N.; Lovón-Quintana, J. J.; Lovón, A. S. P; Valença, G. P. Mater. Res. 2017, 20, 1461-1469.
[9] Schädle, T.; Pejcic, B.; Mizaikoff, B. Anal. Methods 2016, 8, 756-762.
[10] Rajput, D.; Costa, L.; Terekhov, A.; Lansford, K.; Hofmeister, W. Nanotechnology 2012, 23, 105304.
[11] Kubinyi, M. J.; Keresztury, G. Mikrochim. Acta 1997, 14, 525-528.
[12] Davies, M.; Richard, F. E. Trans. Faraday Soc. 1963, 59, 1248-1259.
[13] Chen, L.; Lu, G. J. Electroanal. Chem. 2006, 597, 51-59.
[14] Ekici, O.; Harrision, R. K.; Durr, N. J.; Eversole, D. S. E.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[15] Nettesheim, S.; Zenobi, R. Chem. Phys. Lett. 1996, 255, 39-44.
[16] Koubenakis, A.; Frankevich, V.; Zhang, J.; Zenobi, R. J. Phys. Chem. A 2004, 108, 2405-2410.
[17] Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X.; Lomont, J. P.; Harris, C. B.; Horst Weller, H.; Alivisatos, A. P. ACS Nano 2016, 10, 2144-2151.
[18] Jiang, Z.; Xie, J.; Jiang, D.; Wei, X.; Chen, M.; CrystEngComm, 2013, 15, 560-569.
[19] Aguiar, H.; Serra, J.; González, P.; León, B. J. Non-Cryst. Solids 2009, 355, 475-480.