研究生: |
陳思穎 CHEN, SZU-YING |
---|---|
論文名稱: |
金屬催化物於砷化銦奈米線成長與奈米結構化銦參雜氧化錫基板製作高效能電子元件之影響 Catalytic Effect on InAs Nanowire Growth and Nanostructured ITO Substrate for High Performance Electron Devices |
指導教授: |
陳力俊
Chen, Lih-Juann 闕郁倫 Chueh, Yu-Lun |
口試委員: |
鄭紹良
吳文偉 葉炳宏 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 砷化銦 、銦參雜氧化錫 、奈米線 、成長機制 、奈米結構 、場效電晶體 |
外文關鍵詞: | InAs, ITO, nanowire, growth mechanism, nanostructure, FET |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中主要分為兩個部分,第一部分為金屬催化劑對於砷 化銦奈米線成長的影響,並利用接觸印刷的技術製作大尺寸奈米線陣 列於高效能電晶體特性之應用。另一部分則為延續大規模陣列奈米結 構之影響,探討奈米碗結構之銦參雜氧化錫基板於有機太陽能電池之 高效能元件應用。
第一部分中,主要探討金屬催化劑在砷化銦奈米線成長之影 響。利用,臨場高溫 x 光繞射分析晶體,觀察在高溫中,金屬催化劑 與砷化銦行為,並利用臨場穿透式電子顯微鏡觀察在高溫中,不同金 屬催化物具有不同偏析的行為。推測其化學當量比的差異主要之貢獻, 並推測其可能的成長機制。
另一方面,延續不同催化劑所成長之砷化銦奈米線於薄膜電晶 體元件應用上,發現僅有~20 % 對於背電極控制有較強的相關性, ~80 %為較不易被被電極所控制。反之,利用鎳催化成長之砷化銦奈 米線,約有~98 % 具有良好的 n-type 半導體特性。在鎳催化之奈米 線元件中,關閉電流(off-current)約為 ~10-10 A,且具有良好的電流開 關(ION/IOFF ratio)比約大於 104。以金為催化劑成長之砷化銦奈米線, 具有較不穩定的墊子傳輸特性,推測原因可能來自於此種奈米線偏離了化學當量比。由於利用不同催化劑具有不同的電子傳輸行為,在此研究中更進一步的利用第一原理計算證明。同時製作了上背電極元件 以及利用接觸印刷的技術製作大面積高效能元件。
第二部研究中,延續著奈米陣列於元件的應用,主要著重於 大規模二維奈米碗陣列結構於有機太陽能電池的應用。此研究中,利 用 Langmuir–Blodgett (LB)薄膜製備方法,將聚苯乙烯奈米球陣列排 列於基板上。利用控制不同的尺寸的奈米球,我們可控制二維奈米陣 列表面形貌。利用此奈米結構化的銦參雜氧化錫基板,製作有機太陽 能電池。研究中發現,此結構化的機板可將反射率降至~20 %, 與未 結構化的基板比較,可成功的降低 5–7 % 反射率。此種建立於奈米 結構化基板的有機太陽能電池,具有最高的太陽能轉換效率約為 5.4 %,填充因子約為 66 %,比起平面基板所製作的有機太陽能電池, 效率最高效率 3.9 %,可有效的提升太陽能轉換效率約為~40 % 。由 於結構化後的銦參雜氧化錫基板,有效的降低反射,增加光在有機層 中行走路徑,因此有效的增加短路電流將效率提升。
研究中,我們更將此奈米結構化的銦參雜氧化錫製作於軟性基 板上,而此種結構化基板同樣也可將太陽能效率有效從 1 % 替升至 1.3 %,總體提升效率約為 30 %。
The thesis includes two parts: catalytic effect on InAs nanowire growth and polymer solar cell on large scale array nanobowl In doped tin oxide nanostructure for high performance electron devices.
The influence of the catalyst materials on the electron transport behaviors of InAs nanowires (NWs) grown by a conventional vapor transport technique has been investigated. Utilizing the NW field-effect transistor (FET) device structure, ~20 % and ~80 % of Au-catalyzed InAs NWs exhibit strong and weak gate dependence characteristics, respectively. In contrast, ~98 % of Ni-catalyzed InAs NWs demonstrate an uniform n-type behavior with strong gate dependence, resulting in an average OFF current of ~10-10 A and a high ION/IOFF ratio of >104. The non-uniform device performance of Au-catalyzed NWs is mainly attributed to the non-stoichiometric composition of the NWs grown owing to different segregation behavior compared to that of Ni-catalyzed NWs, which is further supported with the in-situ transmission electron microscopy studies. These distinct electrical characteristics associated with different catalysts were further investigated by the first principle calculation. Moreover, top-gated and large-scale parallel-array FETs were fabricated with Ni-catalyzed NWs by contact printing and channel metallization techniques, which yield excellent electrical performance. The results shed light on the direct correlation of the device performance with the catalyst choice.
A two-dimensional nanobowl array (2D-NBRs) with a unique honeycomb nanostructure was demonstrated with controllable
VIII
morphologies synthesized by the Langmuir–Blodgett (LB) method. The periodicity of 2D-NBRs can be controlled by utilizing different diameters of polystyrene (PS) balls ranged from 500 nm, 870 nm, 1 m to 2 m. The reflectance measurements revealed that the planar structure with a poly(3-hexylthiophene) (P3HT)/(6,6)-phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction layer as an active layer exhibits a reflectance of ~20 %, while a significant reduction of the reflectance , 5– 7 % can be achieved after formation of 2D-NBRs at a PS ball diameter of 500 nm, which perfectly matches simulation results. From experimental results, the highest efficiency of 5.4 % with a filling factor of 66 % was achieved for the device with 2D-NBRs at PS ball diameter of 870 nm. Compared to a planar device with an efficiency of 3.9 %, a maximum enhancement of ~40 % can be achieved owing to the enhancement of Jsc because of unique honeycomb geometry, which exhibits a broadband and omnidirectional light harvesting behavior. Furthermore, a flexible solar cell was demonstrated with an enhanced efficiency of 30 % for a planar structure of 1 % to 1.3 % for 2D-NBRs structure.
References
Chapter 1 Introduction
1.1 Feynman R. P., ―There‘s Plenty of Room at the Bottom.‖ Eng. Sci., 1960, 23, 22-36.
1.2Drexler K. E., ―Engines of Creation: The Coming Era of Nanotechnology.‖ Doubleday, London, 1986.
1.3 Taniguchi N., ―On the Basic Concept of Nanotechnology.‖ Proc. Intl. Conf. Prod, Part II, 1974, 18-23.
1.4 Alivisatos A. P., ―Semiconductor Clusters, Nanocrystals, and Quantum Dots.‖ Science, 1996, 271, 933-937.
1.5 Krans J. M., Rutenbeek, J. M. V., Jongh, L. J. D., ―The Signature of Conductance Quantization in Metallic Point Contacts.‖ Nature, 1995, 375, 767-768.
1.6 Leobandung E., Guo L., Wang Y., Chou S. Y., ―Observation of Quantum Effects and Coulomb Blockade in Silicon Quantum Dot Transistors at Temperature over 100K.‖ Appl. Phys. Lett., 1995, 67, 938-940.
1.7 Hah J. H., Mayya S., Hata M., Jang Y. K., Kim H. W., Ryoo M., Woo S. G., Cho H. K., Moon J. T., ―Converging Lithography by
80
Combination of Electrostatic Layer by Layer Self-assembly and 193 nm Photolithography: Top-down Meets Bottom-up.‖ J. Vac. Sci. Technol. B, 2006, 24, 2209-2213.
1.8 Chen K. C., Wu W. W., Liao C. N., Chen, L. J., Tu K. N., ―Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper.‖ Science, 2008, 321, 1066-1069.
1.9 Zhong Z., Wang D., Cui Y., Bockrath M. W., Leiber C. M., ―Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems.‖ Science, 2003, 302, 1377-1379.
1.10 Chen L. J., ―Metal Silicides: an Integral Part of Microelectronics.‖ JOM, 2005, 57, 24-30.
1.11 Ko H., Takei K., Kapadia R., Chuang S., Fang H., ―Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors.‖ Nature, 2010, 468, 286-289.
1.12 Hahn C., Zhan Z., Fu A., Wu C. H., Hwang Y. J., Gargas D. J., Yang P., ―Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes.‖ ACS Nano, 2011, 5, 3970-3976.
1.13 Hochbaum A. I., Chen R., Delgado R. D., Liang W., Garnett E. C.,
81
1.14
1.15
1.16
Najarian M., Majumdar, A., Yang P., ―Enhanced Thermoelectric Performance of Rough Silicon Nanowires.‖ Nature, 2008, 451, 163-167.
Pan Z. W., Dai Z. R., Wang Z. L., ―Nanobelts of Semiconducting Oxides.‖ Science, 2001, 291, 1947-1949.
Morales A. M., Lieber C. M., ―A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.‖ Science, 1998, 279, 208-211.
Rossetti R., Nakahara S., Brus L. E.,‖ Quantum Size Effects in the Redox Potentials, Resonance Raman Spectra, and Electronic Spectra of CdS Crystallites in Aqueous Solution. ‖Journal of Chemical Physics, 1983, 79, 1086.
David J.,― Measurement and Assignment of the Size-dependent Optical Spectrum in Cadmium selenide (CdSe) Quantum dots‖
Murray C. B., Kagan C. R., Bawendi M. G., "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies." Annual Review of Materials Research, 2000, 30, 545–610.
Ekimov A. I., Onushchenko, A. A., "Quantum Size Effect in
1.17
1.18
1.19
82
Three-Dimensional Microscopic Semiconductor Crystals." JETP
Lett., 2000, 34, 345–349.
1.20 Reed M. A., Randall J. N., Aggarwal R. J., Matyi R. J., Moore T. M.,
Wetsel A. E., ―Observation of Discrete Electronic States in a Zero-dimensional Semiconductor Nanostructure." Phys Rev Lett, 1998, 60, 535–537.
1.21 Chan W. C. W., Nie S., ―Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection.‖ Science, 1998, 281, 2016-2018.
1.22 Reithmaier J. P., Sek G., Loffler A., Hofmann C., Kuhn S., Reitzenstein S., Keldysh L. V., Kulakovskii V. D., Reinecke T. L. and Forchel A., ―Strong Coupling in a Single Quantum Dot– Semiconductor Microcavity System.― Nature, 2004, 432, 197-200.
1.23 Tarucha S., Austing D. G., Honda T., ―Shell Filling and Spin Effects in a Few Electron Quantum Dot.‖ Phys. Rev. Lett., 1996, 77, 3613-3616.
1.24 Lee J., Sundar V. C., Heine J. R., Bawendi M. G. and Jensen K. F., ―Full Color Emission from II-VI Semiconductor Quantum Dot& Polymer Composites.‖ Adv. Mat, 2000, 12, 1102-1105.
83
1.25
1.26
Michler P., Kiraz A., Becher C., Schoenfeld W. V., Petroff P. M., Zhang L., Hu E., Imamoglu A., ―A Quantum Dot Single-Photon Turnstile Device.‖ Science, 2000, 290, 2282-2285.
Kongkanand A., Tvrdy K., Takechi K., Kuno M., and Kamat P. V., ―Quantum Dot Solar Cells. Tuning Photoresponse Through Size and Shape Control of CdSe-TiO2 Architecture.‖ J. Am. Chem. Soc., 2008, 130, 4007-4015.
"www.evidenttech.com: How Quantum Dots Work." 2009.
Iijima S., ―Helical Microtube of Graphitic Carbon.― Nature, 1991,
354, 56-58.
Gudiksen M. S., Lauhon L. J., Wang J., Smithn D. C., Lieber C. M., ―Growth of Nanowires Superlattice Structures for Nanoscale and Electronics.‖ Nature, 2002, 415, 617-620.
Schmid G., Lifeng F. C., ―Metal Clusters and Colloids.‖ Adv. Mater. , 1998, 10, 515-526.
Yang P., Wu Y., Fan R., ―Inorganic Semiconductor Nanowires.‖ Inter. J. Nano., 2002, 1, 1-39.
Wu Y., Yan H., Huang M., Messer B., Song J. H., Yang P., ―Inorganic Semiconductor Nanowires: Rational Growth, Assembly,
1.27 1.28
1.29
1.30
1.31
1.32
84
and Novel Properties.‖ Chem. Eur. J., 2002, 8, 1260-1268.
1.33 Yao Z., Postma H. W. C., Balents L., Dekker C., ―Carbon Nanotube
Intramolecular Logic Gates.‖ Nature, 1999, 402, 273-276.
1.34 Tans S. J., Verschueren R. M., Dekker C., ‖Room Temperature Transistor Based on a Single Carbon Nanotube.‖ Nature, 1998, 393,
49-52.
1.35 Derycke V., Martel R., Appenzaller J., Avouis P., ―Carbon Nanotube
Inter and Intramolecular Logic Gates.‖ Nano Lett., 2001, 1, 453-456.
1.36 He Jr H., Hsin C. L., Liu L., Chen L. J., Wang Z. L., ―Piezoelectric Gated Diode of a Single ZnO Nanowire.‖ Adv. Mater., 2007, 19,
781-784.
1.37 Lee C. Y., Lu M. P., Liao K. F., Lee W. F., Huang C. T., Chen S. Y.,
Chen L. J., ―Free-Standing Single-Crystal NiSi2 Nanowires with Excellent Electrical Transport and Field Emission Properties.‖ J. Phys. Chem. C, 2009, 113, 2286-2289.
1.38 Tsai C. I., Yeh P. H., Wang C. Y., Wu H. W., Chen U. S., Lu M. Y., Wu W. W., Chen L. J., Wang Z. L., ―Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties.‖ Cryst. Growth Des., 2009, 9, 4514-4518.
85
1.39
1.40
1.41
Wagner R. S., Ellis W. C., ―Vapor-Liquid-Solid Mechanism of Single Crystal Growth.‖ Appl. Phys. Lett., 1964, 4, 89-90.
Westwater J., Gosain D. P., Tomiya S., Usui S., ―Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction.‖ J. Vac. Sci. Technol., 1997, 15, 554-557.
Wang Y. W., Zhang L. D., Liang C. H., Wang G. Z., Peng X. S., ―Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires.‖ Chem. Phys. Lett., 2002, 357, 314-318.
Wu X. C., Tao Y. R., ―Growth of CdS Nanowires by Physical Vapor Deposition.‖ J. Cryst. Growth, 2002, 242, 309-312.
Chen C. C., Yeh C. C., Chen C. H., Yu M. Y., Liu H. L., Wu J. J., Chen K. H., Chen L. C., Peng J. Y., Chen Y. F., ―Catalytic Growth and Characterization of Gallium Nitride Nanowires.‖ J. Am. Chem. Soc., 2001, 123, 2791-2798.
Wu Z. H., Mei X. Y., Kim D., Blumin M., Ruda H. E., ―Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by Molecular-Beam Epitaxy.‖ Appl. Phys. Lett., 2002, 81, 5177-5179.
Duan X., Huang Y., Cui Y., Wang J., Lieber C. M., ―Indium
1.42
1.43
1.44
1.45
86
1.46
1.47
1.48
Phosphide Nanowire as Building Blocks for Nanoscale Electronic and Optoelectronic Devices.‖ Nature, 2001, 409, 66-69.
Lee K. H., Lee S. W., Vanfleet R. R., Sigmund W., ―Amorphous Silica Nanowires Grown by the Vapor-Solid Mechanism.‖ Chem. Phys. Lett., 2003, 376, 498-503.
Lee K. H., Lee S. W., Vanfleet R. R., Sigmund W., ―Amorphous Silica Nanowires Grown by the Vapor-solid Mechanism.‖ Chem. Phys. Lett., 2003, 376, 498-503.
Johnson M. C., Lee C. J., Bourret-Courchesne E. D., Konsek S. L., Aloni S., Han W. Q., Zettl A., ―Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires.‖ Appl. Phys. Lett., 2004, 85, 5670-5672.
Yang Y. H., Wang C. X., Wang B., Xu N. S., Yang G. W., ―ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement.‖ Chem. Phys. Lett., 2005, 403, 248-251.
Pan Z. W., Dai Z. R., Wang Z. L., ―Nanobelts of Semiconducting Oxides.‖ Science, 2001, 291, 1947-1949.
Winn D. A., Shemilt J. M., Steele B. C. H., ―Titanium Disulphide: A Solid Solution Electrode for Sodium and Lithium.‖ Mat. Res. Bull.,
1.49
1.50
1.51
87
1.52
1.53
1.54
1976, 11, 559-566.
Whittingham M. S., Gamble F. R., ―The Lithium Intercalates of the Transition Metal Dichalcogenides.‖ Mat. Res. Bull., 1975, 10, 363-371.
Lieber C. M., ―Nanoscale Science and Technology: Building a Big Future from Small Things.‖ MRS Bull., 2003, 28, 486-491.
Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H., ‖Current Research Activities Concentrating on One-Dimensional(1D) Nanostructures.‖ Adv. Mater., 2003, 15, 353-389.
Duan X., X Huang X., Cui Y., Wang J., Lieber C. M., ―Indium Phosphide Nanowires as Building Blocks for Nanoscale.‖ Nature, 2001, 409, 66-69.
Huang Y., Duan X., Cui Y., Lauhon L. J., Kim K. H., Lieber C. M., ―Assembled Nanowire Building Blocks.‖, Science, 2001, 294, 1313-1317.
Zhong Z., Wang D., Cui Y., Bockrath M. W., Lieber C. M., ‖Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems.‖ Science, 2003, 302, 1377-1379.
1.55
1.56
1.57
88
1.58
1.59
1.60
1.61
1.62
1.63
Gudiksen M., Lauhon L. J., Wang, J., Smith D., Lieber C. M., ―Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics.‖ Nature, 2002, 415, 617-620.
Wang J., Gudiksen M. S., Duan X., Cui Y., Lieber C. M., ‖Science, 2001, 293, 1455.
Huang M. H., Mao S., Feick H., Yan H., Wu Y., Kind H., Weber E., Russo R., Yang P., ―Room-Temperature Ultraviolet Nanowire Nanolasers.‖ Science, 2001, 292, 1897-1899.
Duan X., Huang Y., Agarwal R., Lieber C. M., ‖Single-Nanowire Electrically Driven Lasers.‖ Nature, 2003, 421, 241-245.
Cui Y., Wei Q., Park H., Lieber C. M., ‖Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species.‖ Science, 2001, 293, 1289-1292.
Wang Q., Javey A., Tu R., Dai H., Kim H. H., McIntyre P., Krish-namohan T., Saraswat K., ―Germanium Nanowire Field-effect Transistors With SiO2 and High-κ HfO2 Gate Dielectrics.‖ Appl. Phys. Lett., 2003, 83, 2432-2434.
Cui Y., Zhong Z., Wang D., Wang W., Lieber C. M., ―High Performance Silicon Nanowire Field Effect Transistors.‖ Nano Lett.,
1.64
89
2003, 3, 149-152.
1.65 Dayeh S. A., Aplin D., Zhou X., Yu P. K. L., Yu E. T., Wang D., 47th
TMS Annual Electronic Materials Conference, Santa Barbara, 2005.
1.66 Bryllert T., Samuelson L., Jensen L., Wernersson L., DRC Proc., 2005, 1, 157.
1.67 Goldberger J., Sirbuly D., Law M., Yang P., ‖ZnO Nanowire Transistors.‖ J. Phys. Chem. B, 2005, 109, 9-14.
1.68 Ng H. T., Han J., Yamada T., Nguyen P., Chen Y. P., Meyyappan M., ―Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor.‖ Nano Lett., 2004, 4, 1247-1252.
1.69Roddaro S., ‖Growth of Vertical InAs Nanowires on Heterostructured Substrates.‖ Nanotechnology, 2009, 20, 285303.
1.70 Dayeh S. A., Yu E.T., Wang D., ‖Growth of InAs Nanowires on SiO2 Substrates: Nucleation, Evolution, and the Role of Au Nanoparticles.‖ J. Phys. Chem. C, 2007, 111, 13331-13336.
1.71 Artensson T. M. et al., ‖Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self-Assembled Organic Coatings.‖ Adv. Mater., 2007, 19, 1801-1806.
90
1.72
1.73
1.74
Lind E., Persson A.I., Samuelson L., Wernersson L.E., ‖Improved Subthreshold Slope in an InAs Nanowire Heterostructure Field-Effect Transistor.‖ Nano Lett., 2006, 6, 1842-1846.
Jiang X., Xiong Q., Nam S., Qian F., Li Y., Lieber C.M., ―InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices.‖ Nano Lett., 2007, 7, 3214-3218.
Woodall M., Freeouf J. L., Pettit G. D., Jackson T., Kircher P., ―Ohmic Contacts to n-GaAs Using Graded Bandgap Layers of GaxIn1- xAs Grown by Molecular Beam Epitaxy.‖ J. Vac. Sci. Technol., 1981, 19, 626-627.
Chueh Y. L., Ford A. C., Ho J. C., Jacobson Z. A., Fan Z., Chen C. Y., Chou L. J., Javey A., ‖Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction.‖ Nano Lett. 2008, 8, 4528-4533.
Ford A.C., Ho J. C., Chueh Y. L., Tseng Y. C., Fan Z., Guo J., Bokor J., Javey A., ‖Diameter-Dependent Electron Mobility of InAs Nanowires.‖ Nano Lett. 2009, 9, 360-365.
Joyce H. J., Gao Q., Tan H. H., Jagadish C., Kim Y., Guo Y., Zou J., ‖Twin-Free Uniform Epitaxial GaAs Nanowires Grown by a
1.75
1.76
1.77
91
1.78
Two-Temperature Process.‖ Nano Lett., 2007, 7,921-926.
Joyce H. J., Gao Q., Tan H. H., Jagadish C., Kim Y., Fickenscher M. A., Perera S., Hoang T. B., Smith L. M., Jackson H. E., Yarrison- Rice J. M., Zhang X., Zou J., ‖Unexpected Benefits of Rapid Growth Rate for III−V Nanowires.‖ Nano Lett., 2009, 9, 695-701.
Dayeh S. A., Yu E. T., Wang D., ‖Surface Diffusion and Substrate−Nanowire Adatom Exchange in InAs Nanowire Growth.‖ Nano Lett., 2009, 9, 1967-1972.
Alexandra C. F., Ho J. C., Fan Z., Ergen O., Altoe V., Aloni S., Razavil H., Javey A., ‖Synthesis, Contact Printing, and Device Characterization of Ni-Catalyzed, Crystalline InAs Nanowires.‖ Nano Res, 2008, 1, 32-39.
Ford A. C., Kumar S. B., Kapadia R., Guo J., Javey A., ‖Observation of Degenerate One-Dimensional Sub-Bands in Cylindrical InAs Nanowires.‖ Nano Letters, 2012,12, 1340-1343.
Brabec C. J., ‖Organic photovoltaics: technology and market.‖ Sol. Energy Mater. Sol. Cells, 2004, 83, 273-292.
Krebs F. C., ‖Pad Printing as a Film Forming Technique for Polymer
1.79
1.80
1.81
1.83
1.83
92
Solar Cells.‖ Sol .Energy Mater. Sol. Cells, 2009, 93, 484-488.
1.84 Gaudiana R. and Brabec C. J., ‖Organic Materials: Fantastic Plastic.‖
Nat. Photonics, 2008, 2, 287-289.
1.85 Park S. H., Roy A., Beaupre ́S. S., Cho S, Coates N., Moon J. S.,
Moses D., Leclerc M., Lee K. and Heeger A. J., ‖Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%.‖ Nat. Photonics, 2009, 3, 297-302.
1.86 Liang Y. Y., Feng D. Q., Wu Y., Tsai S. T., Li G., Ray C., Yu L. P., ‖Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties.‖ J.Am. Chem. Soc., 2009, 131, 7792-7799.
1.88 Forrest S. R., ―The Limits to Organic Photovoltaic Cell Efficiency.‖ MRS Bull., 2005, 30, 28.
1.89 Coakley K. M., Liu Y., Goh C., McGehee M. D., ‖Ordered Organic-Inorganic Bulk Heterojunction Photovoltaic Cells.‖ MRS Bull., 2005, 30, 37.
1.87 Shaw P. E., Ruseckas A., Samuel I. D.W., ‖Exciton Diffusion Measurements in Poly(3-hexylthiophene).‖ Adv.Mater., 2008, 20, 3516-3520.
93
1.90 Lu G., Li L., Yang X., ‖Creating a Uniform Distribution of Fullerene C60 Nanorods in a Polymer Matrix and its Photovoltaic Applications.‖ Small, 2008, 4, 601-606.
Chapter 3 Catalyst Effect on InAs NWs Growth
3.1 Chueh Y. L., Ford A. C., Ho J. C., Jacobson Z. A., Fan Z., Chen C. Y., Chou L. J., Javey A., ‖Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction.‖ Nano Lett. 2008, 8, 4528-4533.
3.2 Ford A.C., Ho J. C., Chueh Y. L., Tseng Y. C., Fan Z., Guo J., Bokor J., Javey A., ‖Diameter-Dependent Electron Mobility of InAs Nanowires.‖ Nano Lett. 2009, 9, 360-365.
3.3 Joyce H. J., Gao Q., Tan H. H., Jagadish C., Kim Y., Guo Y., Zou J., ‖Twin-Free Uniform Epitaxial GaAs Nanowires Grown by a Two-Temperature Process.‖ Nano Lett., 2007, 7,921-926.
3.4 Joyce H. J., Gao Q., Tan H. H., Jagadish C., Kim Y., Fickenscher M. A., Perera S., Hoang T. B., Smith L. M., Jackson H. E., Yarrison- Rice J. M., Zhang X., Zou J., ‖Unexpected Benefits of Rapid Growth Rate for III−V Nanowires.‖ Nano Lett., 2009, 9, 695-701.
94
3.5 Dayeh S. A., Yu E. T., Wang D., ‖Surface Diffusion and Substrate−Nanowire Adatom Exchange in InAs Nanowire Growth.‖ Nano Lett., 2009, 9, 1967-1972.
3.6 Alexandra C. F., Ho J. C., Fan Z., Ergen O., Altoe V., Aloni S., Razavil H., Javey A., ‖Synthesis, Contact Printing, and Device Characterization of Ni-Catalyzed, Crystalline InAs Nanowires.‖ Nano Res, 2008, 1, 32-39.
3.7Ford A. C., Kumar S. B., Kapadia R., Guo J., Javey A., ‖Observation of Degenerate One-Dimensional Sub-Bands in Cylindrical InAs Nanowires.‖ Nano Letters, 2012,12, 1340-1343.
3.8 Vanderbilt D., ‖Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism.‖ Physical Review B, 1990. 41, 7892-7895.
3.9 Chueh Y. L., Fan Z., Takei K., Ko H., Kapadia R., Rathore A. A., Miller N., Yu K., Wu M., Haller E. E., Javey A., ‖Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays.‖ Nano Letter., 2010, 10, 520-523.
3.10 Massalski T., Binary Alloys Phase Diagrams, 1987.
3.11 Chueh Y. L., Boswel C. N., Yuan C. W., Shin S. J., Takei K., Ho J.
95
C., Ko H., Fan Z., Haller E. E., Chrzan D. C., Javey A., ‖Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays.‖ Nano Letters, 2010,10, 393-397.
3.12 Wang C.Y., Gong N.W., Chen L. J., ―High-Sensitivity Solid-State Pb(Core)/ZnO(Shell) Nanothermometers Fabricated by a Facile Galvanic Displacement Method.‖ Adv. Mater., 2008, 20, 4789-4792.
3.13 Chueh Y. L., Ford A. C., Ho J. C., Jacobson Z. A., Fan Z. Y., Chen C. Y., Chou L. J., Javey A., ‖Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays.‖ Nano Lett. 2008, 8, 4528-4533.
3.14 Dick K. A., Deppert K., Mårtensson T., Mandl B., Samuelson L., Seifert W., ‖Black Ge Based on Crystalline/Amorphous Core/Shell Nanoneedle Arrays.‖ Nano Lett., 2005, 5, 761-764.
3.15 Dayeh S. A., Yu E. T., Wang D., ‖Surface Diffusion and Substrate−Nanowire Adatom Exchange in InAs Nanowire Growth.‖ Nano Lett., 2009, 9, 1967-1972.
3.16 Kodambaka S., Tersoff J., Reuter M. C., Ross F. M., ―Germanium Nanowire Growth Below the Eutectic Temperature.‖ Science,
96
2007, 316, 729-732.
3.17 Johansson J., Svensson C. P. T., Ma ̊rtensson T., Samuelson L.,
Seifert W., ―Mass Transport Model for Semiconductor Nanowire Growth.‖ J. Phys. Chem. B, 2005, 109, 13567-13571.
Chapter 4 Influence of Catalyst Choices on Transport Behaviors of InAs NWs for High-Performance Nanoscale Transistors
4.1 Qin Y., Wang X, Wang Z. L., ‖Multi-quantum Well Nanowire
Heterostructures for Multi-colour Lasers.‖ Nature, 2008, 451,
809-813
4.2 Liang G., Xiang J., Kharche N., Klimeck G., Lieber C.M., Lundstrom
M., ―Performance Analysis of a Ge/Si Core/Shell Nanowire
Field-Effect Transistor.‖ Nano Lett., 2007, 7, 642-646.
4.3 Jiang X., Xiang Q., Nam S., Qian F., Li Y., Lieber C.M., ―InAs/InP
Radial Nanowire Heterostructures as High Electron Mobility Devices.‖
Nano Lett., 2007, 7, 3214-3218.
4.4 Wu Y., Yang P., ‖Direct Observation of Vapor−Liquid−Solid
Nanowire Growth.‖ J. Am. Chem. Soc., 2001, 123, 3165-3166. 97

4.5 Segall M.D., et al., ‖First-Principles Simulation: Ideas, Illustrations and the CASTEP Code.‖ Journal of Physics: Condensed Matter, 2002. 14, 2717-2744.
4.6 Ceperley D. M., Alder B. J., ‖Ground State of the Electron Gas by a Stochastic Method.‖ Physical Review Letters, 1980. 45, 566-569.
4.7 Perdew J. P., Zunger A., ―Self-interaction Correction to Density-functional Approximations for Many-electron Systems.‖ Physical Review B, 1981. 23, 5048-5079.
4.8 Monkhorst H. J., Pack J.D., ‖Special Points for Brillouin-zone Integrations.‖ Physical Review B, 1976. 13, 5188-5192.
4.9 Park H. D., Prokes S. M., Twigg M. E., Cammarata R. C. , Gaillot A.C., ‖Si-assisted Growth of InAs nanowires.‖ Appl.Phys. Lett., 2006, 89, 223125-223127.
4.10 Mandl B., Stangl J., Mårtensson T., Mikkelsen A., Eriksson J., Karlsson L. S., Bauer G., Samuelson L., Seifert W., ‖Au-Free Epitaxial Growth of InAs Nanowires.‖ Nano Lett., 2006, 6, 1817-1821.
4.11 Javey A., Nam S., Friendman R. S., Yan H., Lieber C. M., ‖Layer-by-Layer Assembly of Nanowires for
98
Three-Dimensional, Multifunctional Electronics.‖ Nano Lett.,
2007, 7, 773-777.
4.12 Fan Z., Ho J. C., Jacobson Z. A., Yerushalmi R., Alley R. L.,
Razavi H., Javey A., ―Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing.‖ Nano Letters, 2008, 8, 20-25.
Chapter 5 Large Scale Two-dimensional Nanobowl Array High Efficiency Polymer Solar Cell
5.1 Brabec C. J., ‖Organic Photovoltaics: Technology and Market.‖ Sol.
Energy Mater. Sol. Cells, 2004, 83, 273-292.
5.2 Krebs F. C., ‖Pad printing as a Film Forming Technique for Polymer
Solar Cells.‖ Sol .Energy Mater. Sol. Cells, 2009, 93, 484-488.
5.3 Gaudiana R. and Brabec C. J., ‖Organic Materials: Fantastic Plastic.‖
Nat. Photonics, 2008, 2, 287-289.
5.4 Park S. H., Roy A., Beaupre ́S., Cho S., Coates N., Moon J. S., Moses
D., Leclerc M., Lee K., Heeger A. J., ‖Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100%.‖ Nat. Photonics, 2009, 3, 297-302.
99
5.5 Liang Y. Y., Feng D. Q., Wu Y., Tsai S. T., Li G., Ray C., Yu L. P., ‖Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties.‖ J.Am. Chem. Soc., 2009, 131, 7792-7799.
5.7 Forrest S. R., ―The Limits to Organic Photovoltaic Cell Efficiency.‖ MRS Bull., 2005, 30, 28.
5.8 Coakley K. M., Liu Y., Goh C., McGehee M. D., ‖Ordered Organic-Inorganic Bulk Heterojunction Photovoltaic Cells.‖ MRS Bull., 2005, 30, 37.
5.9 Lu G., Li L., Yang X., “Creating a Uniform Distribution of Fullerene C60 Nanorods in a Polymer Matrix and its Photovoltaic Applications.‖ Small, 2008, 4, 601-606.
5.10 Ma W., Yang C., Gong X., Lee K., Heeger A. J., ‖Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology.‖ Adv. Funct. Mater., 2005, 15, 1617-1622.
5.6 Shaw P. E., Ruseckas A., Samuel I. D.W., ‖Exciton Diffusion Measurements in Poly(3-hexylthiophene).‖ Adv.Mater., 2008, 20, 3516-3520.
100
5.11
5.12
Yang X., Lu G., Li L., Zhou E., ‖Nanoscale Phase-Aggregation-Induced Performance Improvement of Polymer Solar Cells.‖ Small, 2007, 3, 611-621.
Li G., Yao Y., Yang H., Shrotriya V., Yang G., Yang Y., ―Solvent Annealing Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes.‖ Adv. Funct. Mater., 2007, 17, 1636-1644.
Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y., ―High-efficiency Solution Processable Polymer Photovoltaic Cells by Self-organization of Polymer Blends.‖ Nat. Mater., 2005, 4, 864-868.
Kroon J. M., Wienk M. M., Verhees W. J. H., Hummelen J. C., ‖Accurate Efficiency Determination and Stability Studies of Conjugated Polymer/fullerene Solar Cells.‖ Thin Solid Films, 2002, 403, 223-228.
Chen F. C., Lin Y. K., Ko C. J., ‖Submicron-scale Manipulation of Phase Separation in Organic Solar Cells.‖ Appl. Phys. Lett., 2008, 92, 023307-023309.
Xi J. Q., Schubert M. F., Kim J. K., Schubert E. F., Chen M., Lin S.
5.13
5.14
5.15
5.16
101
Y., Liu W., Smart J. A., ‖Optical Thin-film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection.‖ Nat Photon, 2007, 1, 176-179.
5.17 Huang Y. F., Chattopadhyay S., Jen Y. J., Peng C. Y., Liu T. A., Hsu Y. K., Pan C.L., Lo H.C., Hsu C. H., Chang Y.H., Hsu Y. K., Pan C. L., Lo H.C., Hsu C. H., Chang Y. H., Lee C. S., Chen K. H., Chen L.C., ‖Improved Broadband and Quasi-omnidirectional Anti-reflection Properties with Biomimetic Silicon Nanostructures.‖ Nat. Nanotechnol., 2007, 2, 770-774.
5.18 Monestier F., Simon J. J., Torchio P., Escoubas L., Flory F., Bailly S., Bettingnies R. de, Guillerez S., Defranoux C., ‖Modeling the Short-circuit Current Density of Polymer Solar Cells based on P3HT:PCBM Blend.‖ Sol. Energy Mater. Sol. Cells, 2007, 91, 405-410.
5.19 Huang Y. F., Chattopadhyay S., Jen Y. J., Peng C. Y., Liu T. A., Hsu Y. K., Pan C.L., Lo H.C., Hsu C.H., Chang Y. H., Lee C. S., Chen K.H., Chen L. C., ―Improved Broadband and Quasi-omnidirectional Anti-reflection Properties with Biomimetic Silicon Nanostructures.‖ Nat. Nanotechnol., 2007, 2, 770-774.
102
5.20 Lee Y. J., Ruby D. S., Peters D. W., McKenzie B. B., Hsu J. W. P., ‖ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells.‖ Nano Lett., 2008, 8, 1501-1505.
5.21 Lohmuller T., Helgert M., Sundermann M., Brunner R., Spatz J. P., ‖Biomimetic Interfaces for High-Performance Optics in the Deep-UV Light Range.‖ Nano Lett., 2008, 8, 1429-1433.
5.22 Zhu J., Yu Z., Burkhard G. F., Hsu C. M., Connor S. T., Xu Y., Wang Q., McGehee M., Fan S., Cui Y., ‖Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays.‖ Nano Lett., 2009, 9, 279-282.
5.23 Yu Z., Gao H., Wu H., Ge H., Chou S. Y., ‖Fabrication of Large Area Subwavelength Antireflection Structures on Si Using Trilayer Resist Nanoimprint Lithography and Lift-off.‖ J. Vac. Sci. Technol. B, 2003, 21, 3974-3979.
5.24 Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., ‖Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions.‖ Science, 1995, 270, 1789-1791.
103
Chapter 7 Future Prospect
7.1 Datta S., Das B.,― Electronic analog of the electro‐optic modulator‖, Appl. Phys. Lett., 1990, 56, 665-667.