研究生: |
張庭恩 Zhang, Ting-En |
---|---|
論文名稱: |
製程參數對高功率脈衝磁控濺鍍製備氮化鉬薄膜結構與性質之影響 Effects of Process Parameters on Structure and Properties of Molybdenum Nitride Thin Films by High-Power Impulse Magnetron Sputtering |
指導教授: |
黃嘉宏
Huang, Jia-Hong |
口試委員: |
張銀祐
Chang, Yin-Yu 李志偉 Lee, Jyh-Wei 林郁洧 Lin, Yu-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 112 |
中文關鍵詞: | 氮化鉬 、高功率脈衝磁控濺鍍 、織構 、殘留應力 |
外文關鍵詞: | Molybdenum nitride, High-power impulse magnetron sputtering, Texture, Residual stress |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的為使用高功率磁控脈衝濺鍍(HiPIMS)鍍覆緻密且高硬度的單相γ-Mo2N薄膜;並且透過調控製程參數,改善 HiPIMS高殘留應力和低沉積速率的缺點。實驗調控的參數有佔空比、工作壓力和氮氣流量,分別影響峰值功率、平均自由徑和鉬金屬殘留量。結果顯示,隨著佔空比和工作壓力降低,能夠製備出緻密的薄膜。試片D10(10% 的佔空比)和 P05(5 mTorr 的工作壓力)所使用參數最佳,均為具有高硬度 (約24 GPa) 的單相 Mo2N薄膜,且幾乎沒有殘留應力。此結果亦指出高壓應力並不是高硬度的必要條件。此外,Mo2N薄膜的優選方向可以藉由改變製程參數,在 (200) 和 (111) 之間切換。(200)的織構係數隨著佔空比和工作壓力的減少而增加。在佔空比 ≥10%時,競爭成長理論和離子干擾效應可用來解釋織構的變化機制。(200)面上的氮空缺可能有利於(200)取向的晶粒形成,因此當N2+/(N2+N2+)的比例13%時,尚能出現(200)的織構。隨著佔空比縮小到 5%,高能量的氣體離子引起離子穿隧效應,因此薄膜呈現(200)主導的織構。隨著工作氣壓增加,使得離子能量降低,因此減少了離子穿隧效應,而離子干擾效應開始起作用。在高工作氣壓(10 mTorr)的低能量沉積條件下可以製備具有(111) 織構的薄膜。在HiPIMS製程中,減少佔空比和工作氣壓能夠引起顯著的離子轟擊效應,進而增加Mo2N薄膜的壓應力,使薄膜變得更緻密,增加其硬度及降低其電阻率。
The objectives of this study were to produce single phase γ-Mo2N thin films with dense structure and high-hardness by high power impulse magnetron sputtering (HiPIMS), in which high residual stress and low deposition rate could be controlled by adjusting the process parameters. Duty cycle, working pressure and nitrogen flow rate were selected as the controlling process parameters, which were respectively related to peak power, mean free path and the amount of retained Mo metal. The results showed that dense Mo2N thin films could be produced as the duty cycle and working pressure decreased. Mo2N samples D10 (10% duty cycle) and P05 (5 mTorr working pressure) were deposited with the optimum process parameters, where the films possessed single phase Mo2N with high hardness (~ 24 GPa) and almost no residual stress, indicating that high compressive residual stress was not a necessary condition for high hardness. The preferred orientation of Mo2N thin films could be tailored from (200) to (111) by controlling the process parameters. The texture coefficient of (200) increased as the duty cycle and working pressure decreased. The texture evolution could be explained by the competitive growth theory and ion interference effect for the samples deposited with duty cycle 10%. The N vacancies on the (200) plane might facilitate the formation of (200)-oriented grains, and thus (200) peak appeared when the N2+/(N2+N2+) ratio 13%. As the duty cycle decreased to 5%, the high-energy gas ions caused the ion channeling effect, leading to the (200)-dominant texture. As the working pressure increased, the energy of the ions decreased, thereby the ion channeling effect becoming less effective and the ion interference effect being functioning. The (111)-dominant texture could be prepared at low energy deposition condition with high working pressure (10 mTorr). Decreasing duty cycle and working pressure in HPPMS process could induce significant ion peening effect, and thereby increase the compressive stress and densify the Mo2N thin film, which could increase the hardness and decrease the electrical resistivity of the thin film.
[1] H. Holleck, Material selection for hard coatings, J. Vac Sci. Technol., A. 4 (1986) 2661-2669.
[2] Z.T.Y. Liu, X. Zhou, S.V. Khare, D. Gall, Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation, J. Phys.: Condens. Matter 26 (2014) 025404.
[3] L.E. Toth, Transition metal carbides and nitrides, Berkeley Square House, London, 1971.
[4] J.H. Huang, K.W. Lau, G.P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17-24.
[5] C.L. Bull, T. Kawashima, P.F. McMillan, D. Machon, O. Shebanova, D. Daisenberger, E. Soignard, T. Muromachi, L.C. Chapon, Crystal structure and high-pressure properties of γ-Mo2N determined by neutron powder diffraction and X-ray diffraction. J. Solid State Chem. 179 (2006) 1762-1767.
[6] L. Hultman, Thermal stability of nitride thin films, Vacuum 57 (2000) 1-30.
[7] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41 (1990) 191-204.
[8] D. Jianxin, L. Jianhua, Z. Jinlong, S. Wenlong, N. Ming, Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes, Wear 264 (2008) 298-307.
[9] T. Suszko, W. Gulbiński, J. Jagielski, The role of surface oxidation in friction processes on molybdenum nitride thin films, Surf. Coat. Technol. 194 (2005) 319-324.
[10] V. Zin, E. Miorin, S.M. Deambrosis, F. Montagner, M. Fabrizio, Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates, Tribol. Int. 119 (2019) 372-380.
[11] H. Jehn, P. Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met., 58 (1978) 85-98.
[12] N. Koutná, D. Holec, O. Svoboda, F. Klimashin, P. Mayrhofer, Point defects stabilise cubic Mo-N and Ta-N, J. Phys. D: Appl. Phys. 49 (2016) 375303.
[13] W.Z. Kang, Optimization of the deposition processing of MoNx thin films by design of experiment and single variable (nitrogen flow rate) methods, National Tsing Hua university, Master thesis, 2019.
[14] H.L. Schick, Thermodynamics of certain refractory compounds, Academic Press, New York, 1966.
[15] C.C. Chou, Effects of nitrogen flow rate and substrate bias on structure and properties of molybdenum nitride thin films, National Tsing Hua university, Master thesis, 2019.
[16] C.L. Chang, S.G. Shih, P.H. Chen, W.C. Chen, C.T. Ho, W.Y. Wu, Effect of duty cycles on the deposition and characteristics of high power impulse magnetron sputtering deposited TiN thin films, Surf. Coat. Technol. 259 (2014) 232-237.
[17] A. Anders, Deposition rates of high power impulse magnetron sputtering: Physics and economics, J. Vac. Sci. Technol. A 28 (2010) 783-790.
[18] G. Greczynski, J. Lu, I. Petrov, J.E. Greene, S. Boltz, W. Kölker, C. Schiffers, O. Lemmer, L. Hultman, Metal versus rare-gas ion irradiation during Ti1-xAlxN film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias, J. Vac. Sci. Technol. A 30 (2012) 061504.
[19] G. Greczynski, J. Patscheider, J. Lu, B. Alling, A. Ektarawong, J. Jesen, I. Petrov, J.E. Greene, L. Hultman, Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPMS/DCMS co-deposition, Surf. Coat. Technol. 280 (2015) 174-184.
[20] G. Greczynski, I. Zhirkov, I. Petrov, J.E. Greene, J. Rosen, Control of the metal/gas ion ratio incident at the substrate plane during high-power impulse magnetron sputtering of transition metals in Ar, Thin Solid Films 642 (2017) 36-40.
[21] J. Paulitsch, M. Schenkel, T. Zufraß, P.H. Mayrhofer, W.D. Münz, Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films 518 (2010) 5558-5564.
[22] P. Tan, L. Fu, J. Teng, J. Zhu, W. Yang, D. Li, L. Zhou, Effect of texture on wear resistance of tantalum nitride film, Tribol. Int. 133 (2019) 126-135.
[23] M.R. Bache, W.J. Evans, Impact of texture on mechanical properties in an advanced titanium alloy, Mater. Sci. Eng. A 319-321 (2001) 409-414.
[24] P. Hones, N. Martin, M. Regula, F. Lévy, Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D: Appl. Phys. 36 (2003) 1023-1029.
[25] H. Kindlund, D.G. Sangiovanni, L.M. Olcoz, J. Lu, J. Jensen, J. Birch, I. Petrov, J. E. Greene, V. Chirita, L. Hultman, Toughness enhancement in hard ceramic thin films by alloy design. APL Mater. 1 (2013) 042104.
[26] A. Anders, Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS), J. Appl. Phys. 121 (2017) 171101.
[27] J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, United States of America, 1992, p.112.
[28] D.L. Perry, Handbook of inorganic compounds, CRC press, New York, 2016.
[29] G.T. Kim, T.K. Park, H. Chung, Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: XPS study of Mo-based compounds, Appl. Surf. Sci. 152 (1999) 35-43.
[30] T. Wang, G. Zhang, S. Ren, B. Jiang, Effect of nitrogen flow rate on structure and properties of MoNx coatings deposited by facing target sputtering, J. Alloys Compd. 701 (2017) 1-8.
[31] F.F. Klimashin, N. Koutná, H. Euchner, D. Holec, P.H. Mayrhofer, The impact of nitrogen content and vacancies on structure and mechanical properties of Mo-N thin films, J. Appl. Phys. 120 (2016) 1-10.
[32] B.D. Ozsdolay, K. Balasubramanian, D. Gall, Cation and anion vacancies in cubic molybdenum nitride, J. Alloys Compd. 705 (2017) 631-637.
[33] K. Inumaru, K. Baba, S. Yamanaka, Synthesis and characterization of superconducting β-Mo2N crystalline phase on a Si Substrate: an application of pulsed laser deposition to nitride chemistry, Chem. Mater. 17 (2005) 5935-5940.
[34] V. Tagliazucca, M. Leoni, C. Weidenthaler, Crystal structure and microstructural changes of molybdenum nitrides traces during catalytic reaction by in situ X-ray diffraction studies. Chem. Phys. 16 (2014) 6182-6188.
[35] H. Ihara, Y. Kimura, K. Senzaki, H. Zezuka, M. Hirabayashi, Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN, Phys. Rev. B 31 (1985) 3177-3178.
[36] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character. 82 (1909) 172-175.
[37] A. Qayyum, S. Zeb, M.A. Naveed, N.U. Rehman, S.A. Ghauri, M. Zakaullah, Optical emission spectroscopy of Ar-N2 mixture plasma, J. Quant. Spectrosc. Radiat. Transf. 107 (2007) 361-371.
[38] I. Jauberteau, R. Mayet, J. Cornette, A. Bessaudou, P. Carles, J.L. Jauberteau, T.M. Méjean, A reduction-nitridation process of molybdenum films in expanding microwave plasma: Crystal structure of molybdenum nitrides, Surf. Coat. Technol. 270 (2015) 77-85.
[39] V.P. Anitha, S. Major, D. Chandrashekharam, M. Bhatnagar, Deposition of molybdenum nitride films by r.f. reactive magnetron sputtering, Surf. Coat. Technol. 79 (1996) 50-54.
[40] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[41] T. Hanabusa, K. Kusaka, O. Sakata, Residual stress and thermal stress observation in thin copper films, Thin Solid Films 459 (2004) 245-248.
[42] K. Inumaru, K. Baba, S. Yamanaka, Superconducting molybdenum nitride epitaxial thin films deposited on MgO and α-Al2O3 substrates by molecular beam epitaxy, Appl. Surf. Sci. 253 (2006) 2863-2869.
[43] H. Ihara, M. Hirabayashi, K. Senzaki, Y. Kimura, H. Kezuka, Superconductivity of B1-MoN films annealed under high pressure, Phys. Rev. B 32 (1985) 1816-1817.
[44] Suszko, Tomasz, W. Gulbiński, J. Jagielski, The role of surface oxidation in friction processes on molybdenum nitride thin films, Surf. Coat. Technol. 194 (2005) 319-324.
[45] W. Zheng, T.P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K. Schlichte, W. Zhang, D.S. Su, F. Schüth, R. Schlögl, Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition, J. Am. Chem. Soc. 135 (2013) 3458-3464.
[46] J.G. Choi, H.J. Lee, L.T. Thompson, Temperature-programmed desorption of H2 from molybdenum nitride thin films, Appl. Surf. Sci. 78 (1994) 299-307.
[47] E.J. Markel, J.W. VanZee, Catalytic hydrodesulfurization by molybdenum nitride, J. Catal. 126 (1990) 643-657.
[48] M. Nagai, Y. Yamamoto, R. Aono, Surface properties and fractal approach to molybdenum nitrides and their surface activity for hydrodenitrogenation, Colloid Surf. A-Physicochem. Eng. Asp. 241 (2004) 257-263.
[49] V.P. Anitha, A. Bhattacharya, N.G. Patil, S. Major, Study of sputtered molybdenum nitride as a diffusion barrier, Thin Solid Films 236 (1993) 306-310.
[50] J. Wang, P. Munroe, Z.F. Zhou, Z.H. Xie, Nanostructured molybdenum nitride-based coatings: Effect of nitrogen concentration on microstructure and mechanical properties, Thin Solid Films 682 (2019) 82-92.
[51] V. Zin, E. Miorin, S. M. Deambrosis, F. Montagner, M. Fabrizio, Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates, Tribol. Int. 119 (2018) 372-380.
[52] M. Kommer, T. Sube, A. Richter, M. Fenker, W. Schulz, B. Hader, J. Albrecht, Enhanced wear resistance of molybdenum nitride coatings deposited by high power impulse magnetron sputtering by using micropatterned surfaces, Surf. Coat. Technol. 333 (2018) 1-12.
[53] J.Y. Xiang, F.B. Wu, Gas inlet and input power modulated sputtering molybdenum nitride thin films, Surf. Coat. Technol. 332 (2017) 161-167.
[54] B.O. Postolnyi, V.M. Beresnev, G. Abadias, O.V. Bondar, L. Rebouta, J.P. Araujo, A.D. Pogrebnjak, Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness, J. Alloys Compd. 725 (2017) 1188-1198.
[55] A. Gilewicz, B. Warcholinski, D. Murzynski, The properties of molybdenum nitride coatings obtained by cathodic arc evaporation, Surf. Coat. Technol. 236 (2013) 149-158.
[56] H. Hazar, Characterization of MoN coatings for pistons in a diesel engine, Mater. Des. 31. (2010) 624-627.
[57] P. Hones, N. Martin, M. Regula, F. Lévy, Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D: Appl. Phys. 36 (2003) 1023-1029.
[58] N. Brenning, A. Butler, H. Hajihoseini, M. Rudolph, M. A. Raadu, J.T. Gudmundsson, T. Minea, D. Lundin, Optimization of HiPIMS discharges: The selection of pulse power, pulse length, gas pressure, and magnetic field strength, J. Vac. Sci. Technol. A 38 (2020) 033008.
[59] N. Brenning, A. Butler, H. Hajihoseini, M.Rudolph, M.A. Raadu, J.T. Gudmundsson, T. Minea1, D. Lundin, Effect of chamber pressure on defect generation and their influence on corrosion and tribological properties of HIPIMS deposited CrN/NbN coatings, Surf. Coat. Technol. 336 (2018) 84-91.
[60] R. Machunze, A.P. Ehiasarian, F.D. Tichelaar, G.C. A.M. Janssen, Stress and texture in HIPIMS TiN thin films, Thin Solid Films 518 (2009) 1561-1565.
[61] X. Jiang, F.C. Yang, W.C. Chen, J.W, Lee, C.L. Chang, Effect of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlSiN thin films prepared by high power impulse magnetron sputtering, Surf. Coat. Technol. 320 (2017) 138-145.
[62] H.J. Mei, S.S. Zhao, Z.T. Wu, W. Dai, Q. Wang, Effect of nitrogen partial pressure on microstructure and mechanical properties of Mo-Cu-V-N composite coatings deposited by HIPIMS, Surf. Coat. Technol. 329 (2017) 68-76.
[63] W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol. 149 (2002) 7-13.
[64] C.H. Ma, J.H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol. 200 (2006) 3868-3875.
[65] M. Kobayashi, Y. Doi, TiN and TiC coating on cemented carbides by ion plating, Thin Solid Films 54 (1978) 67-74.
[66] J.H. Huang, Y.H. Chen, A.N. Wang, G.P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol. 258 (2014) 211-218.
[67] H.W. Hsiao, J.H. Huang, G.P. Yu, Effect of oxygen on fracture toughness of Zr (N,O) hard coatings, Surf. Coat. Technol. 304 (2016) 330-339.
[68] I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J. L. Jauberteau, P. Carles, T. M. Méjean, Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties, Coatings 5 (2015) 656-687.
[69] Y.G. Shen, Effect of deposition conditions on mechanical stresses and microstructure of sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films, Mater. Sci. Eng. A 359 (2003) 158-167.
[70] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117-128.
[71] L. Hultman, J. E. Sundgren, J. E. Greene, D. B. Bergstrom, High-flux low-energy (-20 eV) N2+ ion irradiation during TiN deposition by reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys. 78 (1995) 5395-5403.
[72] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys. 93 (2003) 9086-9094.
[73] L. Dong, D.J. Srolovitz, Texture development mechanisms in ion beam assisted deposition, J. Appl. Phys. 84 (1998) 5261-5269.
[74] J.E. Sansonetti, W.C. Martin, Handbook of basic atomic spectroscopic data, J. Phys. Chem. Ref. Data 34 (2005) 1559-2259.
[75] C.H. Ma, J.H. Huang, H.D. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films 446 (2004) 184-193.
[76] W.J. Chou, G.P. Yu, J.H. Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films 405 (2002) 162-169.
[77] D.J. Johns, Thermal Stress Analyses, Elsevier, 2013.
[78] J.T. Gudmundsson, N. Brenning, D. Lundin, U. Helmersson, High power impulse magnetron sputtering discharge, J. Vac. Sci. Technol. A 30 (2012) 030801.
[79] G. Skordaris, K. D. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, CIRP J. Manuf. Sci. Technol. 18 (2017) 145-151.
[80] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films 117 (1984) 243-249.
[81] R.P.B. Viloan, D. Lundin, J. Keraudy, U. Helmersson, Tuning the stress in TiN films by regulating the doubly charged ion fraction in a reactive HiPIMS discharge, J. Appl. Phys. 127 (2020) 103302.
[82] J. Paulitsch, M. Schenkel, T. Zufrab, P.H. Mayrhofer, W.D. Münz, Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit, Thin Solid Films 518 (2010) 5558-5564.
[83] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr, 2 (1918) 98-100.
[84] C. Quaeyhaegens, G. Knuyt, J. D'Haen, L.M. Stals, Experimental study of the growth evolution from random towards a (111) preferential orientation of PVD TiN coatings, Thin Solid Films 258 (1995) 170-173.
[85] J.H. Huang, C.H. Lin, G. P. Yu, Texture evolution of vanadium nitride thin films, Thin Solid Films 688 (2019) 137415.
[86] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valance bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
[87] R. Martínez-Cuenca, R. Mondragón, L. Hernández, C. Segarra, J.C. Jarque, T. Hibiki, J.E. Juliá, Forced-convective heat-transfer coefficient and pressure drop of water-based nanofluids in a horizontal pipe, Appl. Therm. Eng. 98 (2016) 841-849.