簡易檢索 / 詳目顯示

研究生: 游瑞銓
Yu, Jui-Chuan
論文名稱: 建構高科技產業多目標產能規劃問題之決策支援系統
Construct Decision Support System for Multi-objective Capacity Planning in High-Tech Industries
指導教授: 簡禎富
口試委員: 簡正忠
吳吉政
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 78
中文關鍵詞: 紫式決策分析架構決策支援系統多目標基因演算法柏拉圖非凌越解
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高科技產業面對產業環境快速變遷,競爭壓力劇增下,產能規劃受到定價策略、成本結構、市場需求、存貨管理與產能限制等因素影響,同時也受限於需求預測的結果,處於被動的情況也限制了企業財務績效的表現,同時高科技產業為資本密集產業,其中以產能建置的設備機台花費支出占大宗,可見產能管理的能力對公司營運目標的達成有非常大的影響。
    也因產能管理受到許多因素的影響,需考慮多個目標進行規劃已成趨勢,方能提升整體企業收益;同時,高科技產業之製程也相對其他產業來的複雜,使得其問題規劃擴大,因此本研究提供一決策支援系統來協助決策者釐清決策問題之架構,透過系統介面與互動將整個決策過程外顯化,以引導決策者進行決策方案的選取。
    本研究以高科技產業為研究對象,透過紫式決策分析架構,以決策流程為系統建構導向,架構產能規劃之決策支援系統模組,建立一產能規劃決策支援系統。運用基因演算法作為求解核心模組,針對財務績效層面與生產績效層面之目標進行求解,並透過互動模組,針對求解結果進行分析,協助決策者從中選取適當的決策方案。本研究以台灣某半導體公司為實證以檢驗效度,實證結果顯示皆較案例公司之原本規劃較好,同時也能將決策者對於目標方案之偏好透過互動模組外顯出來,進而達到提升決策品質一致性與快速的反應時間。


    High-tech industries face rapidly changing of industrial environment and dramatically increasing of the competitive pressure, while capacity planning is affected by pricing strategies, cost structure, market demand, inventory management, capacity portfolio,and demand forecast. Furthermore, high-tech industries are capital-intensive industries, which requires substantial amount of capital for the capacity-building equipment machine. With the industrial environment and its capital-intensive quality, the capacity manage is especially improtant to reaceh operational goals. In order to enhance the overall return, multi-objectives for capacity planning is crutial.
    This study imports the concept of capacity management of high-tech industry, using UNISON decision framework to construct capacity planning decision support system for the decision-oriented. The genetic algorithms as the the core module to solve the multi-objectives capacity planning for financial goals and production goal. In the interactive scheme, the decision makers are guided iteratively to the most preferred solution. The decision makers can use the systematic procedure to analyze and to solve the problem to reach the optimal financial goals and production goal. This study applied to semiconductor manufacturing as empirical objects, and the results show our decision support system is better than case corporations and also show the preference of the goal of decision makers through interactive modules, and thus to enhance the consistency of decision-making quality and faster response time.

    目錄 i 表目錄 iii 圖目錄 iv 第一章 緒論 1 1.1 研究背景、動機與重要性 1 1.2 研究目的與研究範圍 3 1.3 論文結構 3 第二章 文獻回顧 5 2.1 產能規劃 5 2.2 多目標基因演算法 8 2.3 決策支援系統 12 2.2.1 決策支援系統架構 13 2.2.2 決策支援系統類型 14 2.4 紫式決策分析架構 16 第三章 研究方法 19 3.1 問題定義與系統架構 20 3.1.1 瞭解問題 21 3.1.2 界定利基 23 3.2 基因演算法模組 26 3.2.1 架構影響關係 26 3.2.2 客觀敘述感受 34 3.3 互動模組 37 3.3.1 綜合判斷 37 3.3.2 權衡與決策 41 3.4 資料庫模組 41 3.5 介面模組 42 第四章 實證研究 43 4.1 系統定義 43 4.2 基因演算法模組 47 4.3 互動模組 51 4.4 資料庫模組 64 4.5 介面模組 66 4.6 實證結果 68 4.7 討論 70 第五章 結論與未來研究方向 71 參考文獻 73

    毛治國(2003),決策,天下出版社,台北。
    余政道(2011),高科技產業之多目標營收管理,國立清華大學工業工程與工程管理學系碩士論文。
    吳琮璠、謝清佳(2009),資訊管理理論與實務,智勝文化,台北。
    張智星,資料群聚與樣式辨認。上網日期:2012年5月27日。網址 : http://mirlab.org/jang。
    陳鴻基、嚴紀中(2004),管理資訊系統,雙葉書廊,台北。
    簡禎富(2005),決策分析與管理,雙葉書廊,台北。
    簡禎富、吳吉政、余政道、游瑞銓(2012),「An Efficient Multi-Objective Genetic Algorithm for the Semiconductor Price-Demand-Capacity-Capex-Cost-Return (PDCCCR)Modeling」,第八屆台灣作業研究學會年會暨第十一屆中華決策科學學會年會與學術研討會,台中,台灣。
    Barahona, F., Bermon, S., Gunluk, O., and Hood, S. (2003), “Robust Capacity Planning in Semiconductor manufacturing,” T. J. Watson Research Center, IBM, NY, Tech. Report RC22196.
    Benavides, D.L., Duley, J.R., and Johnson, B.E. (1999), “As good as it gets: Optimal fab design and deployment,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12, No. 3, pp.281-287.
    Bermon, S. and Hood, S. J. (1999), “Capacity Optimization Planning System (CAPS),” Interfaces, Vol. 29, No. 5, pp. 31-51.
    Blasco, X., Herrero, J., Sanchis, J., and Martínez, M. (2008), “A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization,” Information Sciences, Vol.178, No. 20, pp. 3908-3924
    Burgelman, R.A. (1994), “Fading memories: A process theory of strategic business exit in dynamic environments,” Administrative Science Quarterly, Vol. 39, No 1, pp. 24-56.

    Chien, C.-F., Chen, Y.-J., and Peng J.-T. (2010), “Manufacturing Intelligence for Semiconductor Demand Forecast Based on Technology Diffusion and Product Life Cycle,” International Journal of Prodcution Economics, Vol. 128, No. 2, pp. 496-509.
    Chien, C.-F. and Hsu, C.-Y. (2011), “UNISON Analysis to Model and Reduce Step-and-Scan Overlay Errors for Semiconductor Manufacturing,” Journal of Intelligent Manufacturing, Vol. 22, No.3, pp. 399-412.
    Chien, C.-F., Wang, H.-J., and Wang M.-W. (2007), “A UNISON Framework for Analyzing Alternative Strategies of IC Final Testing for Enhancing Overall Operational Effectiveness,” International Journal of Production Economics, Vol. 107, No. 1, pp. 20-30.
    Chien, C.-F., Wu, J.-Z., and Wu, C.-C. (2011), “A Two-stage Stochastic Programming Approach for New Tape-Out Allocation Decisions for Demand Dulfillment Planning in Semiconductor Manufacturing,” Flexible Services and Manufacturing Journal, Online.
    Chien, C.-F. and Zheng, J,-N. (2011), “Mini–Max Regret Strategy for Robust Capacity Expansion Decisions in Semiconductor Manufacturing,” Journal of Intelligent Manufacturing, Online.
    Christie, R.M.E. and Wu, S.D. (2002), “Semiconductor capacity planning: stochastic modeling and computational studies,” IIE Transactions, Vol. 34, No. 2, pp.131-143.
    Chung, S.H. and Hsieh, M.H. (2008), “Long-term tool elimination planning for a wafer fab,” Computers & Industrial Engineering, Vol. 54, No. 3, pp.589-601.
    Cohon, J.L. (1978), Multiobjective Programming and Planning, Academic Press, New York.
    Cox III, J.F. and Blackstone, J.H. (1998), “APICS Dictionary 9th Ed.” APICS;The Educational Society for Resource Management .
    Dargam, F.C.C. and Perz, E.W. (1998), “A decision support system for power plant design,” European Journal of Operational Research, Vol. 109, No. 2, pp. 310-320.
    Deb, K. (2001), Multi-objective Mptimization using Evolutionary Algorithns. John Wiley & sons, New York.
    Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197.
    Fonseca, C.M. and Fleming, P.J. (1993), “Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Gneralization,” Proceeding of 5th International Conference on GAs, pp. 416-423.
    Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, John Wiley & Sons, New York.
    Gen, M. and Cheng, R. (2000), Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York.
    Gen, M., Cheng, R., and Lin, L. (2008), Network Models and Optimization: Multiobjective Genetic Algorithms, Springer, London.
    Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston.
    Huang, Z. and Ng, M.K. (2003), “A Note on K-Modes Clustering,” Journal of Classification, Vol. 20, No. 2, pp. 257-261.
    Karabuk, S. and Wu, S.D. (2003), “Coordinating strategic capacity planning in the semiconductor industry,” Operations Research, Vol. 51, No. 6, pp. 839-849.
    Konak, A., Coit, D.W., and Smith, A.E. (2006), “Multi-Objective Optimization Using Genetic Algorithm: A Toturial,” Reliability Engineering & System Safety, Vol. 91, No. 9, pp. 992-1007.
    Lin, L. and Gen, M. (2009), “Auto-Tuning Strategy for Evoluationary Algorithm: Balancing Between Exploration and Exploitation,” Soft Computation, Vol. 13, No. 2, pp. 157-168.
    Martello, S. and Toth, P. (1990), Knapsack problems: Algorithms and computer implementation, John Wiley & Sons, New York.
    Mieghem, J.A.V. (2003), “Capacity Managemnet, Investment, and, Heding:Review and Recent Developments,” Manufacturing & Service Operations Management, Vol. 5, No. 4, pp. 269-302.
    Molina, J., Santana, L.V., Hernandez-Diaz, A.G., Coello, C.A.C., and Caballero, R. (2009), “g-dominance: Reference point based dominance for multiobjective metaheuristics,” European Journal of Operational Research, Vol. 197, No. 2, pp. 685-692.
    Pham, D.T., Dimov, S.S., and Nguyen, C.D. (2004), “An Incremental K-Means algorithm,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 218, No. 7, pp. 783-795.
    Power, D.J. (2001), “Supporting Decision-Makers: An Expanded Framework,” 2001 Informing Science Conference, Krakow, Poland.
    Power, D.J. and Sharda, R. (2007), “Model-driven decision support systems: Concepts and research directions,” Decision Support Systems, Vol. 43, No. 3, pp. 1044-1061
    Schaffer J.D. (1985), “Multiple Objective Optimization with Vector Evaluated Genetic Algorithm,” Proceeding of 1st International Conference on GAs, pp. 93-100.
    Scott Morton, M.S. (1971), Management Decision Systems: Computer Based Support for Decision Making, Harvard University, Cambridge.
    Srinivas, N. and Deb, K. (1994), “Multiobjective Function Optimization Using Nondominated Sorting Genetic Algorithm,” Evolutionary Computation, Vol. 2, No. 3, pp. 221-248.
    Turban, E. (1995), Decision support and expert systems:management support systems (4 ed), Prentice-Hall, Engelwood Cliffs.
    Wang, S.M., Chena, J.C., and Wang, K.-J. (2007), “Resource portfolio planning of make-to-stock products using a constraint programming-based genetic algorithm, ” Omega, Vol. 35, No. 2, pp.237-246.
    Wang, K.J. and Hou, T.C. (2003), “Modelling and Resolving the Joint Problem of Capacity Expansion and Allocation with Multiple Resources and A Limited Budget in the Semiconductor Testing Industry,” International Journal of Production Research, Vol. 41, No. 14, pp. 3217-3235.
    Wang, K.J., Wang, S.M., and Chen, J.C. (2008), “A Resource Portfolio Planning Model Using Sampling-Based Stochastic Programming and Genetic Algorithm,” European Journal of Operational Research, Vol. 184, No. 1, pp. 327-340
    Yang, M.-S. and Ko, C.-H. (1996), “On a class of fuzzy c-numbers clustering procedures for fuzzy data,” Fuzzy Sets and Systems, Vol. 84, No. 1, pp. 49-60
    Zhang, M.T., Niu, S., Deng, S., Zhang, Z., Li, Q., and Zheng, L. (2007), “Hierarchical Capacity Planning With Reconfigurable Kits in Global Semiconductor Assembly and Test Manufacturing,” IEEE Transactions on Automation Science and Engineering, Vol. 4, No. 4, pp. 543-552.
    Zhang, Z., Zhang, M.T., Niu, S., and Zheng, L. (2006), “Capacity Planning with Reconfigurable Kits in Semiconductor Test Manufacturing,” International Journal of Production Research, Vol. 44 , No. 13 , pp. 2625-2644.
    Zio, E. and Bazzo, R. (2011), “A clustering procedure for reducing the number of representative solutions in the Pareto Front of multiobjective optimization problems,” European Journal of Operational Research, Vol. 210, No. 3, pp. 624-634
    Zitzler, E. and Thiele, L. (1999), “Multiobjective Evolutionary Algorithms: A Comparative Case Study and Strength Pareto Approach,” IEEE Transactions on Evolutionary Computation, Vol. 3, No. 4, pp. 257-271.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE