研究生: |
楊宜蓓 Yang, Yi Pei |
---|---|
論文名稱: |
以抗氧化劑提昇三維細胞球體移植至小鼠缺血 下肢後的留存率及其應用於促進血管新生之研究 Enhancement of Cell Retention and Therapeutic Effects by Concurrent Delivery of 3D Cell Aggregates and Antioxidant in a Mouse Model of Hindlimb Ischemia |
指導教授: |
宋信文
Sung, Hsing Wen |
口試委員: |
賴伯亮
林坤儒 張燕 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 28 |
中文關鍵詞: | 缺血性疾病 、細胞療法 、活性氧化物質 、抗氧化劑 、血管新生 |
外文關鍵詞: | ischemic diseases, cell therapy, reactive oxygen species, antioxidant, angiogenesis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞治療在組織工程與再生醫學領域上,為一相當具有前瞻性的治療方法。曾有研究群利用注射幹細胞的方式針對缺血性疾病進行治療,但效果有限。其原因為單顆懸浮式的細胞在注射過程中,會有大量細胞流失的現象;此外,缺血組織內部發炎反應會產生大量的活性氧化物質(reactive oxygen species, ROS),傷害細胞中的核酸、蛋白質與脂質,使植入體內的細胞不易貼附生長而發揮治療效果。在實驗室過去的研究裡,已成功開發出細胞球體培養系統,並利用此系統製備出含有人類臍帶靜脈內皮細胞(human umbilical vein endothelial cell, HUVEC)與臍帶血間葉幹細胞(cord-blood mesnechymal stem cell, cbMSC)之三維球體。實驗結果顯示,該細胞球體可以有效提升細胞移植後的留存率,並幫助缺血組織產生血管新生。為了進一步提升移植細胞的貼附能力及其後續的治療效果,本論文使用抗氧化劑N-乙醯半胱氨酸(N-acetylcysteine, NAC)與細胞球體一起進行注射,期望藉由NAC的抗氧化功能降低缺血組織內的氧化壓力。在體外實驗中,我們發現NAC可以有效降低過氧化氫的氧化力,並證明NAC可以使細胞球體於氧化壓力下的貼附能力顯著增加,使細胞能夠正常生長,並分泌血管新生相關的生長因子。在體內實驗部分,我們以手術方式將小鼠左腿股動脈結紮,建立下肢缺血的模式後,再將HUVEC/cbMSC細胞球體懸浮於含有NAC的食鹽水中,並注射至缺血組織周圍;實驗中,以僅注射生理食鹽水、僅注射NAC與僅注射HUVEC/cbMSC球體等三個組別做為控制組。動物實驗結果顯示,NAC可有效降低缺血組織內的氧化壓力,提升細胞留存率。而從單光子放射電腦斷層掃描與組織免疫染色的結果中,我們發現同時注射NAC與細胞球體可以有效誘導組織血管新生,改善患部血液灌流情況,減緩小鼠下肢萎縮。此外,我們亦使用即時定量聚合酶連鎖反應針對人類特有的基因序列進行分析,發現NAC確實可以增加留存於組織中的人類細胞。以上實驗結果證實抗氧化劑NAC能夠減少缺血組織內的氧化壓力,進而提升細胞移植後的存留率與其治療效果。
Cell transplantation for therapeutic neovascularization holds great promise for treating ischemic diseases. However, following injections, retention of transplanted cells in engrafted areas remains problematic, and can be deleterious to cell-transplantation therapy. Additionally, reactive oxygen species (ROSs) are generated during tissue ischemia, which may disrupt cellular function of the engrafted cells via oxidation of major cellular macromolecules, such as lipid, DNA and protein. To enhance the cell retention and the subsequent therapeutic benefits, three-dimensional aggregates of human umbilical vein endothelial cells (HUVECs) and cord-blood mesenchymal stem cells (cbMSCs) that had been reported in our previous studies were concurrently delivered with an antioxidant N-acetylcysteine (NAC) for the treatment of ischemic disease. The results of in vitro studies demonstrated that NAC can effectively reduce the environmental oxidative stress and improve the cell adhesion ability. Transplantation of HUVEC/cbMSC aggregates with NAC into a mouse model of an ischemic limb significantly reduced regional oxidative stress, promoted formation of functional vessels, improved limb blood perfusion, and attenuated muscle atrophy and bone losses, thereby rescuing tissue degeneration. Notably, the retention of engrafted cells and their therapeutic efficacy were significantly improved by the concurrent delivery of NAC. These analytical results demonstrate that by co-delivery with antioxidant NAC, the potential of HUVEC/cbMSC aggregates for therapeutic neovascularization can be markedly enhanced.
1. Jain, R.K., Molecular regulation of vessel maturation. Nat Med, 2003. 9(6): p. 685-93.
2. Jain, R.K., et al., Engineering vascularized tissue. Nat Biotechnol, 2005. 23(7): p. 821-3.
3. Segers, V.F., et al., Protease-resistant stromal cell-derived factor-1 for the treatment of experimental peripheral artery disease. Circulation, 2011. 123(12): p. 1306-15.
4. Rey, S., et al., Synergistic effect of HIF-1alpha gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc Natl Acad Sci U S A, 2009. 106(48): p. 20399-404.
5. Droge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002. 82(1): p. 47-95.
6. Toledano, B.D.A.a.M.B., ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Natural Review Molecular Cell Biology.
7. Circu, M.L. and T.Y. Aw, Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 2010. 48(6): p. 749-62.
8. Thannickal, V.J. and B.L. Fanburg, Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 2000. 279(6): p. L1005-28.
9. Lambeth, J.D., NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol, 2004. 4(3): p. 181-9.
10. Mittal, M., et al., Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal, 2014. 20(7): p. 1126-67.
11. Frangogiannis, N.G., C.W. Smith, and M.L. Entman, The inflammatory response in myocardial infarction. Cardiovasc Res, 2002. 53(1): p. 31-47.
12. Vergely, C., et al., Identification and quantification of free radicals during myocardial ischemia and reperfusion using electron paramagnetic resonance spectroscopy. Arch Biochem Biophys, 2003. 420(2): p. 209-16.
13. Nahrendorf, M., M.J. Pittet, and F.K. Swirski, Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation, 2010. 121(22): p. 2437-45.
14. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
15. Horie, M., et al., Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells, 2009. 27(4): p. 878-87.
16. Bhang, S.H., et al., Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 2011. 32(11): p. 2734-47.
17. Amann, B., et al., Design and rationale of a randomized, double-blind, placebo-controlled phase III study for autologous bone marrow cell transplantation in critical limb ischemia: the BONe Marrow Outcomes Trial in Critical Limb Ischemia (BONMOT-CLI). Vasa, 2008. 37(4): p. 319-25.
18. Amann, B., et al., Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant, 2009. 18(3): p. 371-80.
19. Drowley, L., et al., Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther, 2010. 18(10): p. 1865-73.
20. Rahman, I., Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim Biophys Acta, 2012. 1822(5): p. 714-28.
21. Chen, W., et al., A redox-based mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart. Circ Res, 1995. 77(2): p. 424-9.
22. Ferrari, R., et al., Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am J Med, 1991. 91(3C): p. 95S-105S.
23. Lee, W.Y., et al., Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials, 2011. 32(24): p. 5558-67.
24. Huang, C.C., et al., Hypoxia-induced therapeutic neovascularization in a mouse model of an ischemic limb using cell aggregates composed of HUVECs and cbMSCs. Biomaterials, 2013. 34(37): p. 9441-50.
25. Laflamme, M.A., et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007. 25(9): p. 1015-24.