簡易檢索 / 詳目顯示

研究生: 黃芝婷
Huang, Chih-Ting
論文名稱: Studying Solution Structure and Dynamics of a Multi-domain Molecular Chaperone by a Hybrid Approach
指導教授: 呂平江
Lyu, Ping-Chiang
口試委員: 徐駿森
Hsu, Chun-Hua
徐尚德
Hsu, Shang-Te Danny
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 76
中文關鍵詞: Trigger FactorTrigger Factor核磁共振小角度散射
外文關鍵詞: Trigger Factor, Trigger Factor, NMR, small angel scattering
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Trigger factor (TF) is a 49 kDa molecular chaperone that is highly conserved in bacteria and is the first to interact with newly synthesized polypeptide chains. TF binds to the ribosomal tunnel exit through the N-terminal ribosome binding domain (RBD), and together the peptidyl-prolyl cis/trans isomerase (PPIase) domain, and together with the C-terminal domain (CTD), to forms a “crouching dragon”-like cradle to facilitate folding of nascent chains as they emerge from the ribosome.
    Recent studies have established that TF exists in a three-state equilibrium with the ribosome: as the free TF is in a monomer-dimer equilibrium and the TF-bound form with the ribosome in a 1:1 stoichiometry. Comparison of several TF crystal structures reveals large domain motions, which are particularly observed in pronounced for the PPIase domain. Unlike most molecular chaperones, e.g., Hsp70, Hsp90 and GroEL/GroES, the chaperone activity of TF is independent of ATP hydrolysis, which is the common energy source to trigger conformational rearrangements during substrate binding. The flexibility based on the different domain architectures in TF is used for the substrates binding, and therefore saying their biologically importance.
    Here we display the development of a hybrid approach based on the combination of NMR spectroscopy and small angle X-ray scattering (SAXS) techniques to characterize the domain architecture of TF in solution and the dynamics thereof. Our long-term goal is to apply such approach to study TF about its co-translational folding. Importantly, the approach should be generally applicable to structural studies on multi-domain, high molecular weight proteins.


    我們所研究的蛋白稱為Trigger Factor (TF),在多數細菌中具高度保留性。此蛋白大小為49 kDa,並可分成三個區段,N端的ribosome-binding domain (RBD)、C端的chaperone domain (CTD),及peptidyl-prolyl cis/trans isomerase domain (PPIase)。其在生物中主要扮演的角色為輔助新合成胺基酸序列摺疊成三級結構,或是控管細胞內蛋白質的品質。藉RBD domain結合核醣體於新合成胺基酸序列的通道出口,TF蛋白成為新生蛋白質第一個接觸的輔助摺疊蛋白,其形成似搖籃的口袋,在通道口等待幫助新合成胺基酸的摺疊 。除了TF蛋白,仍有其它下游輔助摺疊的蛋白,但它們與TF蛋白最大不同,在於TF蛋白利用改變本身結構即可幫助約65-80%的蛋白完成摺疊。
    最近研究中發現,TF蛋白在水溶液中具有三態平衡,可以1:1的比例與核糖體結合、自行形成二聚體及維持單體。另外,對於TF蛋白結構研究上,發現在不同狀態下的TF蛋白,如有結合或沒有結合核醣體的TF蛋白,疊合它們的結構,發現各domain之間具有約10度角的旋轉。所以這篇論文主要研究TF蛋白水溶液中的動態運動,觀察其在水溶液中如何形成二聚體,再進一步探討TF蛋白與新合成蛋白序列之間如何作用以幫助摺疊。我們主要是利用核磁共振(NMR)技術研究。然而,我們所研究的分子對NMR而言是屬於大分子量蛋白質,在一般的方法下,會得到解析度較低的光譜而難以分析,因此,我們希望發展出一套由NMR技術結合其他技術,如小角度散射(SAXS)、residual dipolar coupling (RDC)、paramagnetic relaxation enhancement(PRE)…等方法,發展一套觀察大分子蛋白質在水溶液中動態表現的新研究方法, 進而應用在其他蛋白質上,突破以往NMR技術只能研究小分子蛋白(≤ 30kDa)的限制。

    ABSTRACT .............................................................................................................................. 4 1. INTRODUCTION ................................................................................................................ 8 1.1. THE BIOLOGICAL FUNCTION OF TF ................................................................................. 9 1.2 THE STRUCTURE AND DYNAMICS OF TF ......................................................................... 10 1.2.1. TF provides a cradle for its folding substrates ...................................................... 11 1.2.2. The conformational flexibility of TF ...................................................................... 11 1.2.3. Three-state equilibrium in solution ........................................................................ 12 2. MATERIAL AND METHODS ......................................................................................... 16 2.1. PROTEIN CONSTRUCT DESIGNS ...................................................................................... 16 2.1.1. Domain constructs, expression vectors and E. coli expression system ................. 16 2.1.2. Site-directed mutagenesis of TF ............................................................................ 17 2.1.2.1. Design strategy for I-to-V and L-to-V mutations ......................................................................... 19 2.1.2.2. The primer sequence design ......................................................................................................... 19 2.1.2.3. The condition and procedure of PCR experiment ........................................................................ 21 2.2. PROTEIN EXPRESSION .................................................................................................... 22 2.2.1. Unlabelled protein expression ............................................................................... 22 2.2.1.1. Small-scale expression tests ......................................................................................................... 22 2.2.1.2. Large-scale expression and purification for sample production .................................................. 22 2.2.2. Uniform and selective isotope labeling strategy .................................................... 23 2.2.2.1. Minimum medium of uniform 13C/15N labeling ........................................................................... 23 2.2.2.2. Uniform protein deuteration ......................................................................................................... 24 2.2.2.3. Selective protein side-chain methyl group protonation ................................................................ 25 2.3. PROTEIN PURIFICATION ................................................................................................. 27 2.3.1. His-tag affinity purification ................................................................................... 27 2.3.2. Size-exclusion chromatography (SEC) .................................................................. 27 2.4. BIOPHYSICAL AND BIOCHEMICAL CHARACTERIZATION OF TF ..................................... 28 2.4.1. The oligomeric state of TF ..................................................................................... 28 2.4.1.1. SEC ............................................................................................................................................. 28 2.4.1.2. Analytical ultracentrifugation (AUC) .......................................................................................... 28 2.4.1.3. Glutaraldehyde crosslinking assay ............................................................................................... 29 2.4.2. Circular dichroism spectroscopy .......................................................................... 30 2.4.2.1. In-house CD ................................................................................................................................ 30 2.4.2.2. Synchrotron radiation CD (SR-CD) ............................................................................................. 30 2.4.3. Solution state nuclear magnetic resonance (NMR) spectroscopy ......................... 31 2.4.3.1. Principle of multidimensional NMR spectroscopy ...................................................................... 31 2.4.3.2. Analysis of NMR data .................................................................................................................. 32 2.4.4. Small-angel X-ray scattering (SAXS) .................................................................... 33 2.4.4.1. Principle of SAXS ........................................................................................................................ 33 2.4.4.2. Analysis and modeling of SAXS data .......................................................................................... 34 3. RESULT .............................................................................................................................. 36 3.1. OVERVIEW OF I-TO-V AND L-TO-V MUTANTS OF TF .................................................... 36 3.2. SMALL SCALE EXPRESSION TESTS OF DIFFERENT TF CONSTRUCTS .............................. 36 3.3. PURIFICATION OF DIFFERENT TF CONSTRUCTS ............................................................. 37 3.3.1. Culture in Luria-Bertanl medium .......................................................................... 37 3.3.2 Culture in D2O M9 minimal medium ...................................................................... 40 3.4. BIOPHYSICAL AND BIOCHEMICAL CHARACTERIZATION OF TF ..................................... 43 3.4.1. Analysis oligomerisation state of TF by SEC ........................................................ 43 3.4.1.1.Protein molecular weight calibration (analytical column and preparative column) ..................... 43 3.4.1.2. Analysis of the oligomeric state of TF by concentration-SEC ..................................................... 45 3.4.1.3. Inter-domain Interactions between different TF constructs ......................................................... 48 3.4.2. Analysis oligomerisation state of TF by AUC ....................................................... 49 3.4.3. Analysis oligomerisation state of TF by glutaraldehyde crosslinking (A) ............. 50 3.4.4. Comparison of TF variants by in-house CD and SR-CD spectroscopy ................ 51 3.4.5. Solution state NMR spectroscopy .......................................................................... 53 3.4.5.1. Spectral comparison of different domain constructs .................................................................... 53 3.4.5.2. Backbone assignments of TF-113-432 ......................................................................................... 54 3.4.5.3. Comparison of I-to-V and L-to-V mutants .................................................................................. 56 3.4.6. SAXS ....................................................................................................................... 57 3.4.6.1. Analysis and modeling of TF variants ......................................................................................... 57 4. DISCUSSION ...................................................................................................................... 60 4.1 ANALYSIS OLIGOMERISATION STATE OF TF ................................................................... 60 4.2 THE SOLUTION STATE NMR SPECTROSCOPY ................................................................. 61 4.3 THE ENVELOPE SHAPE OF FULL-LENGTH DIMER FORM .................................................. 62 5. SUPPLEMENTARY INFORMATION ........................................................................... 65 5.1 VECTOR SYSTEM MAPS ................................................................................................... 65 5.2 THE ELUTION VOLUME OF SEC ...................................................................................... 67 5.3 THE DATA FOR THE AUC EXPERIMENTS ........................................................................ 69 6.REFERENCES: ................................................................................................................... 73

    1. Ellis, R. J. (2006). Molecular chaperones: assisting assembly in addition to
    folding. Trends in Biochemical Sciences 31, 395-401.
    2. Mayer, M. P. & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and
    molecular mechanism. Cellular and Molecular Life Sciences 62, 670-684.
    3. Horwich, A. L., Fenton, W. A., Chapman, E. & Farr, G. W. (2007). Two
    families of chaperonin: Physiology and mechanism. Annual Review of Cell
    and Developmental Biology 23, 115-145.
    4. Liberek, K., Lewandowska, A. & Zietkiewicz, S. (2008). Chaperones in
    control of protein disaggregation. Embo Journal 27, 328-335.
    5. Saibil, H. R. (2008). Chaperone machines in action. Current Opinion in
    Structural Biology 18, 35-42.
    6. Hartl, F. U. & Hayer-Hartl, M. (2009). Converging concepts of protein folding
    in vitro and in vivo. Nature Structural & Molecular Biology 16, 574-581.
    7. Hartl, F. U. & Hayer-Hartl, M. (2002). Protein folding - Molecular chaperones
    in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.
    8. Craig, E. A., Eisenman, H. C. & Hundley, H. A. (2003). Ribosome-tethered
    molecular chaperones: the first line of defense against protein misfolding?
    Current Opinion in Microbiology 6, 157-162.
    9. Wegrzyn, R. D. & Deuerling, E. (2005). Molecular guardians for newborn
    proteins: ribosome-associated chaperones and their role in protein folding.
    Cellular and Molecular Life Sciences 62, 2727-2738.
    10. Rauch, T., Hundley, H. A., Pfund, C., Wegrzyn, R. D., Walter, W., Kramer,
    G., Kim, S. Y., Craig, E. A. & Deuerling, E. (2005). Dissecting functional
    similarities of ribosome-associated chaperones from Saccharomyces
    cerevisiae and Escherichia coli. Molecular Microbiology 57, 357-365.
    11. Ferbitz, L., Maier, T., Patzelt, H., Bukau, B., Deuerling, E. & Ban, N. (2004).
    Trigger factor in complex with the ribosome forms a molecular cradle for
    nascent proteins. Nature 431, 590-596.
    12. Blaha, F. J. (2003). Small system security - There is help and hope. Journal
    American Water Works Association 95, 31-32.
    13. Ban, N. (2000). The Complete Atomic Structure of the Large Ribosomal
    Subunit at 2.4 A Resolution. Science 289, 905-920.
    14. Nissen, P. (2000). The Structural Basis of Ribosome Activity in Peptide Bond
    Synthesis. Science 289, 920-930.
    15. Teter, S. A., Houry, W. A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G.,
    Blum, P., Georgopoulos, C. & Hartl, F. U. (1999). Polypeptide flux through
    bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent
    chains. Cell 97, 755-765.
    16. Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A. & Bukau, B.
    (1999). Trigger factor and DnaK cooperate in folding of newly synthesized
    proteins. Nature 400, 693-696.
    17. Genevaux, P., Keppel, F., Schwager, F., Langendijk-Genevaux, P. S., Hartl, F.
    U. & Georgopoulos, C. (2004). In vivo analysis of the overlapping functions
    of DnaK and trigger factor. Embo Reports 5, 195-200.
    18. Deuerling, E., Patzelt, H., Vorderwulbecke, S., Rauch, T., Kramer, G.,
    Schaffitzel, E., Mogk, A., Schulze-Specking, A., Langen, H. & Bukau, B.
    (2003). Trigger Factor and DnaK possess overlapping substrate pools and
    binding specificities. Molecular Microbiology 47, 1317-1328.
    19. Vorderwulbecke, S., Kramer, G., Merz, F., Kurz, T. A., Rauch, T., Zachmann-
    Brand, B., Bukau, B. & Deuerling, E. (2005). Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor
    and DnaK. FEBS Letters 579, 181-187.
    20. Kramer, G., Rauch, T., Rist, W., Vorderwulbecke, S., Patzelt, H., Schulze-
    Specking, A., Ban, N., Deuerling, E. & Bukau, B. (2002). L23 protein
    functions as a chaperone docking site on the ribosome. Nature 419, 171-174.
    21. Kristensen, O. & Gajhede, M. (2003). Chaperone Binding at the Ribosomal
    Exit Tunnel. Structure 11, 1547-1556.
    22. Hesterkamp, T. & Bukau, B. (1996). Identification of the prolyl isomerase
    domain of Escherichia coli trigger factor. FEBS Letters 385, 67-71.
    23. Scholz, C., Stoller, G., Zarnt, T., Fischer, G. & Schmid, F. X. (1997).
    Cooperation of enzymatic and chaperone functions of trigger factor in the
    catalysis of protein folding. Embo Journal 16, 54-58.
    24. Scholz, C., Mucke, M., Rape, M., Pecht, A., Pahl, A., Bang, H. & Schmid, F.
    X. (1998). Recognition of protein substrates by the prolyl isomerase trigger
    factor is independent of proline residues. Journal of Molecular Biology 277,
    723-732.
    25. Kramer, G., Patzelt, H., Rauch, T., Kurz, T. A., Vorderwulbecke, S., Bukau, B.
    & Deuerling, E. (2004). Trigger factor peptidyl-prolyl cis/trans isomerase
    activity is not essential for the folding of cytosolic proteins in Escherichia coli.
    Journal of Biological Chemistry 279, 14165-14170.
    26. Li, Z. Y., Liu, C. P., Zhu, L. Q., Jing, G. Z. & Zhou, J. M. (2001). The
    chaperone activity of trigger factor is distinct from its isomerase activity
    during co-expression with adenylate kinase in Escherichia coli. FEBS Letters
    506, 108-112.
    27. Gupta, R., Lakshmipathy, S. K., Chang, H.-C., Etchells, S. A. & Hartl, F. U.
    (2010). Trigger factor lacking the PPIase domain can enhance the folding of
    eukaryotic multi-domain proteins in Escherichia coli. FEBS Letters 584, 3620-
    3624.
    28. Liu, C. P., Zhou, Q. M., Fan, D. J. & Zhou, J. M. (2010). PPIase domain of
    trigger factor acts as auxiliary chaperone site to assist the folding of protein
    substrates bound to the crevice of trigger factor. Int J Biochem Cell Biol 42,
    890-901.
    29. Merz, F., Hoffmann, A., Rutkowska, A., Zachmann-Brand, B., Bukau, B. &
    Deuerling, E. (2006). The C-terminal domain of Escherichia coli trigger factor
    represents the central module of its chaperone activity. Journal of Biological
    Chemistry 281, 31963-31971.
    30. Yao, Y., Bhabha, G., Kroon, G., Landes, M. & Dyson, H. J. (2007). Structure
    discrimination for the C-terminal domain of Escherichia coli trigger factor in
    solution. Journal of Biomolecular NMR 40, 23-30.
    31. Lakshmipathy, S. K., Tomic, S., Kaiser, C. M., Chang, H. C., Genevaux, P.,
    Georgopoulos, C., Barral, J. M., Johnson, A. E., Hartl, F. U. & Etchells, S. A.
    (2007). Identification of nascent chain interaction sites on trigger factor.
    Journal of Biological Chemistry 282, 12186-12193.
    32. Merz, F., Boehringer, D., Schaffitzel, C., Preissler, S., Hoffmann, A., Maier,
    T., Rutkowska, A., Lozza, J., Ban, N., Bukau, B. & Deuerling, E. (2008).
    Molecular mechanism and structure of Trigger Factor bound to the translating
    ribosome. Embo Journal 27, 1622-1632.
    33. Hoffmann, A., Bukau, B. & Kramer, G. (2010). Structure and function of the
    molecular chaperone Trigger Factor. Biochimica et Biophysica Acta (BBA) -
    Molecular Cell Research 1803, 650-661.
    34. Baram, D. (2005). Structure of trigger factor binding domain in biologically
    homologous complex with eubacterial ribosome reveals its chaperone action.
    Proceedings of the National Academy of Sciences 102, 12017-12022.
    35. Schlunzen, F., Wilson, D. N., Tian, P., Harms, J. M., McInnes, S. J., Hansen,
    H. A. S., Albrecht, R., Buerger, J., Wilbanks, S. M. & Fucini, P. (2005). The
    Binding Mode of the Trigger Factor on the Ribosome: Implications for Protein
    Folding and SRP Interaction. Structure 13, 1685-1694.
    36. Martinez-Hackert, E. & Hendrickson, W. A. (2009). Promiscuous substrate
    recognition in folding and assembly activities of the trigger factor chaperone.
    Cell 138, 923-34.
    37. Kaiser, C. M., Chang, H.-C., Agashe, V. R., Lakshmipathy, S. K., Etchells, S.
    A., Hayer-Hartl, M., Hartl, F. U. & Barral, J. M. (2006). Real-time
    observation of trigger factor function on translating ribosomes. Nature 444,
    455-460.
    38. Patzelt, H., Kramer, G., Rauch, T., Schonfeld, H. J., Bukau, B. & Deuerling, E.
    (2002). Three-state equilibrium of Escherichia coli trigger factor. Biological
    Chemistry 383, 1611-1619.
    39. Maier, R., Scholz, C. & Schmid, F. X. (2001). Dynamic association of trigger
    factor with protein substrates. Journal of Molecular Biology 314, 1181-1190.
    40. Patzelt, H., Kramer, G., Rauch, T., Schonfeld, H. J., Bukau, B. & Deuerling, E.
    (2002). Three-state equilibrium of Escherichia coli trigger factor. Biological
    Chemistry 383, 1611-9.
    41. Howlett, G. J., Minton, A. P. & Rivas, G. (2006). Analytical
    ultracentrifugation for the study of protein association and assembly. Current
    opinion in chemical biology 10, 430-6.
    42. John A. Kiernan. (2000). Formaldehyde,formalin,paraformaldehyde and
    glutaraldedyde: What they are and what they do. Microscopy, 8-12.
    43. Miles, A. J. & Wallace, B. A. (2006). Synchrotron radiation circular dichroism
    spectroscopy of proteins and applications in structural and functional
    genomics. Chemical Society Reviews 35, 39-51.
    44. Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wuthrich, K. (1998).
    TROSY in triple-resonance experiments: new perspectives for sequential
    NMR assignment of large proteins. Proceedings of the National Academy of
    Sciences of the United States of America 95, 13585-90.
    45. Svergun, D. I. & Koch, M. H. J. (2003). Small-angle scattering studies of
    biological macromolecules in solution. Reports on Progress in Physics 66,
    1735-1782.
    46. Hsu, S.-T. D. & Dobson, C. M. (2008). 1H, 15N and 13C assignments of the
    dimeric ribosome binding domain of trigger factor from Escherichia coli.
    Biomolecular NMR Assignments 3, 17-20.
    47. Martinez-Hackert, E. & Hendrickson, W. A. (2009). Promiscuous Substrate
    Recognition in Folding and Assembly Activities of the Trigger Factor
    Chaperone. Cell 138, 923-934.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE