研究生: |
陳致勤 Chih-Chin Chen |
---|---|
論文名稱: |
一種人類促腎上腺皮質激素免疫分析新方法的開發 Development of a new immunoassay for human adrenocorticotropic hoemone |
指導教授: |
許宗雄
Dr. Tzong-Hsiung Hseu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 單株抗體 、促腎上腺皮質激素 、綠色螢光蛋白質 、融合蛋白質 、表面薄層共振 、競爭性酵素連接免疫吸附分析 |
外文關鍵詞: | monoclonal antibody, Adrenocorticotropic Hormone (ACTH), Enhanced Green Fluorescent Protein (EGFP), fusion protein, Surface Plasmon Resonance (SPR), Competitive Enzyme-Linked Immunosorbent Assay (CELISA) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發一種以單株抗體為基礎,用來分析人類血清中促腎上腺皮質激素(Adrenocorticotropic Hormone, ACTH)的免疫分析新方法。這種免疫分析的原理是利用人類ACTH和ACTH-EGFP (Enhanced Green Fluorescent Protein綠色螢光蛋白質)融合蛋白質之間對抗-ACTH單株抗體的競爭,造成信號強弱的改變而來。為此,我們建構了一個帶有ACTH-EGFP基因的質體,並利用鎳離子樹脂從大腸桿菌中純化這個His˙tag融合蛋白質。利用表面薄層共振(Surface Plasmon Resonance, SPR)來測定ACTH-EGFP、Human ACTH 1-39和抗-ACTH單株、多株抗體的親和力。抗-ACTH單株抗體的親和力較高,對ACTH-EGFP為1.94×10-12 M、對Human ACTH 1-39為1.36×10-8 M。最後,這種競爭性酵素連接免疫吸附分析(Competitive Enzyme-Linked Immunosorbent Assay, CELISA)能測量4~10 ng/ml範圍內的人類ACTH。
An immunoassay based on a monoclonal antibody for the analysis of adrenocorticotropic hormone (ACTH) in human serum has been developed. The principle of this immunoassay is the competition between human ACTH and ACTH-EGFP (Enhanced Green Fluorescent Protein) fusion protein. We constructed a prokaryotic vector expressing ACTH-EGFP gene and purified this His˙tag fusion protein from Escherichia coli cultures using nickel resin.
Surface plasmon resonance (SPR) was used as an independent means of determining the affinity of ACTH-EGFP, human ACTH 1-39 and anti-ACTH monoclonal, polyclonal antibodies. The interaction between anti-ACTH monoclonal antibody and ACTH-EGFP, Human ACTH 1-39 was demonstrated to be of high affinity (1.94×10-12 M and 1.36×10-8 M, respectively).
Finally, human ACTH concentration determined by this competitive enzyme-linked immunosorbent assay (CELISA) ranged from 4~10 ng/ml.
1. GN, G., Pharmacology of Adrenal Cortical Hormones. ACTH regulation of the adrenal cortex. 1979, New York: Pergamon. 35-39.
2. Golovin, S., et al., [Synthesis, cloning and primary structure of DNA complementary to mRNA for human pituitary pro-opiomelanocortin]. Bioorg Khim, 1987. 13(4): p. 562-4.
3. Mountjoy, K.G., et al., The cloning of a family of genes that encode the melanocortin receptors. Science, 1992. 257(5074): p. 1248-51.
4. Imai, T., et al., Alteration in the expression of genes for cholesterol side-chain cleavage enzyme and 21-hydroxylase by hypophysectomy and ACTH administration in the rat adrenal. J Mol Endocrinol, 1990. 4(3): p. 239-45.
5. Berg, A.L. and M. Arnadottir, ACTH revisited--potential implications for patients with renal disease. Nephrol Dial Transplant, 2000. 15(7): p. 940-2.
6. Prasher, D.C., et al., Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992. 111(2): p. 229-33.
7. Chalfie, M., et al., Green fluorescent protein as a marker for gene expression. Science, 1994. 263(5148): p. 802-5.
8. Inouye, S. and F.I. Tsuji, Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett, 1994. 341(2-3): p. 277-80.
9. Haseloff, J., et al., Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A, 1997. 94(6): p. 2122-7.
10. Kozak, M., The scanning model for translation: an update. J Cell Biol, 1989. 108(2): p. 229-41.
11. Gomes, P. and D. Andreu, Direct kinetic assay of interactions between small peptides and immobilized antibodies using a surface plasmon resonance biosensor. J Immunol Methods, 2002. 259(1-2): p. 217-30.
12. Diamandis, E.P. and T.K. Christopoulos, Immunoassay. 1996: Academic Press, Inc.
13. Cormack, B.P., R.H. Valdivia, and S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP). Gene, 1996. 173(1 Spec No): p. 33-8.
14. Studier, F.W., et al., Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol, 1990. 185: p. 60-89.
15. Ward, W.W. and S.H. Bokman, Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein. Biochemistry, 1982. 21(19): p. 4535-40.
16. Smith, D.B. and K.S. Johnson, Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene, 1988. 67(1): p. 31-40.
17. Fagerstam, L.G., et al., Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr, 1992. 597(1-2): p. 397-410.
18. Malmqvist, M. and R. Karlsson, Biomolecular interaction analysis: affinity biosensor technologies for functional analysis of proteins. Curr Opin Chem Biol, 1997. 1(3): p. 378-83.
19. Brigham-Burke, M., J.R. Edwards, and D.J. O'Shannessy, Detection of receptor-ligand interactions using surface plasmon resonance: model studies employing the HIV-1 gp120/CD4 interaction. Anal Biochem, 1992. 205(1): p. 125-31.
20. VanCott, T.C., et al., Dissociation rate of antibody-gp120 binding interactions is predictive of V3-mediated neutralization of HIV-1. J Immunol, 1994. 153(1): p. 449-59.
21. England, P., F. Bregegere, and H. Bedouelle, Energetic and kinetic contributions of contact residues of antibody D1.3 in the interaction with lysozyme. Biochemistry, 1997. 36(1): p. 164-72.
22. Houshmand, H., G. Froman, and G. Magnusson, Use of bacteriophage T7 displayed peptides for determination of monoclonal antibody specificity and biosensor analysis of the binding reaction. Anal Biochem, 1999. 268(2): p. 363-70.
23. Wu, Z., et al., Ligand binding analysis of soluble interleukin-2 receptor complexes by surface plasmon resonance. J Biol Chem, 1995. 270(27): p. 16045-51.
24. Lessard, I.A., C. Fuller, and R.N. Perham, Competitive interaction of component enzymes with the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: kinetic analysis using surface plasmon resonance detection. Biochemistry, 1996. 35(51): p. 16863-70.
25. Cheskis, B. and L.P. Freedman, Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. Biochemistry, 1996. 35(10): p. 3309-18.
26. Altschuh, D., et al., Determination of kinetic constants for the interaction between a monoclonal antibody and peptides using surface plasmon resonance. Biochemistry, 1992. 31(27): p. 6298-304.
27. Lemmon, M.A., et al., Independent binding of peptide ligands to the SH2 and SH3 domains of Grb2. J Biol Chem, 1994. 269(50): p. 31653-8.
28. Tamamura, H., et al., Interaction of an anti-HIV peptide, T22, with gp120 and CD4. Biochem Biophys Res Commun, 1996. 219(2): p. 555-9.
29. Chao, H., et al., Kinetic study on the formation of a de novo designed heterodimeric coiled-coil: use of surface plasmon resonance to monitor the association and dissociation of polypeptide chains. Biochemistry, 1996. 35(37): p. 12175-85.
30. Zeder-Lutz, G., et al., Thermodynamic analysis of antigen-antibody binding using biosensor measurements at different temperatures. Anal Biochem, 1997. 246(1): p. 123-32.
31. Patterson, G.H., et al., Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J, 1997. 73(5): p. 2782-90.
32. Ward, W.W., Green Fluorescent Protein: Properties, Applications, and Protocols. M Chalfie, S Kain ed. 1997, New York: John Wiley & Sons.