簡易檢索 / 詳目顯示

研究生: 陳玟吟
論文名稱: 混合型有機-無機奈米熱電材與發光材的製備與性質探索
Preparation and characterization of hybrid organic-inorganic thermoelectric and luminescence nanomaterials
指導教授: 凌永健
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 102
中文關鍵詞: 奈米碳管聚苯胺熱電轉換材量子點飛行式二次離子質譜術
外文關鍵詞: Carbon nanotube, polyaniline, thermoelectric power, quantum dots, TOF-SIMS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚苯胺(PANI)被認為與奈米碳管有相似的物理化學性質,均具有導電度與光學性質可調控的特性,因此吸引對聚苯胺與奈米碳管組合的複材其特殊電、熱、光學性質的探討。本論文以各類官能基化的多層奈米碳管為模板,採用直接聚合聚苯胺方式,將苯胺聚合於多層奈米碳管(MWNTs)表面,以進行其熱電性質,光學性質與微結構和聚苯胺參雜量對導電度的關係。
    aromatic amine (AA)官能基化的MWNTs/PANI,其熱電性質可有效的被提升,PANI/AA-MWNTs的TEP約是PANI的1.5~3.5倍,且PANI/AA-MWNTs的熱電轉換操作溫差範圍可達32 oC,高於PANI操作溫差範圍~12 oC。aromatic amine化學鍵結與物理吸附於MWNTs導致奈米碳管光學性質的差異,系列的探討認為奈米碳管可直接經由化學鍵結位置將電子傳至修飾基且奈米碳管表面修飾基也被認為易捉住excitation energy因而增強其放光性質。反之,修飾基與奈米碳管的靜電吸引力等相互作用現象會導致減弱光學性質。以不同聚合條件製備兩種對溫度變化因素有不同導電度呈現的PANI/MWNTs,一為導電度隨溫度上升而減低,另一則相反。複材微結構和聚苯胺參雜量影響PANI/MWNTs電性質,低溫時高參雜量且PANI、MWNT成長方向接近平行時,較有利於導電度。
    Tetar-aniline可光學調控並穩定CdS奈米粒子,經材料結構分析與光學性質比對,因有效Tetar-aniline與CdS間的電子轉移,導致CdS的bad gap降低,發光性質提高。同時自組裝薄層的樣品製備法,實現二次離子質譜術應用於奈米粒子其元素分佈的偵測。


    Carbon nanotubes (CNTs) were firstly discovered by Iijima, S in 1991. Conductivity polymer was discovered by Heeger, MacDiarmid and Shirakawa in 1970’s. Polyaniline (PANI) possesses physicochemical characteristics similar to CNTs. Their conductive and optical properties could be modulated. PANI has widely been regarded as quasi-one-dimensional semiconductor; whereas CNT can be considered as quantum wires. The novel electronic, photonic and optical properties obtained by coupling these two components are potentially attractive.
    In this thesis, in-situ polymerization was applied to produce PANI/MWNTs composites and various functional groups were used as template for aniline polymerization. To study the thermoelectric properties of multi-walled carbon nanotubes-polyaniline (MWNTs/PANI), we applied “PGEC” model of thermoelectric materials to an organic hybrid system, which was consisted of an aromatic amine functionalized MWNTs (AA-MWNTs) and PANI. The obtained TEP was up to 31 □V/K, which was 1.5~3.5 times to that of neat PANI. The voltage generated by PANI/AA-MWNTs was in the 32 oC temperature gradient, indicating PANI/AA-MWNTs possessing wider operating temperature than PANI (□T<12 oC). The improvement was attributed to the aromatic amine on MWNTs surface and enhanced interface adhesion between PANI and MWNT.
    To study the optical properties of MWNTs/PANI composite, two functional MWNTs, AA-MWNTs and AC-MWNTs (aniline contacted MWNTs), were prepared by chemical bonding and physical absorption with aniline, respectively. For AA-MWNTs, decreasing band gap for π-π* transition is obtained. The electrons generated in MWNTs could transfer directly to aromatic amine group when MWNTs absorb UV or visible light. The aromatic amine was suggested to trap quickly excitation energy and to enhance luminescence behavior. For AC-MWNTs, the interaction between MWNTs acceptor and aniline donor or acid-base/electrostatic reactions between carboxyl group and aniline anion quenched the luminescence. The PANI/AC-MWNTs made of short-chain PANI led band gap increase and red shift luminescence behavior was observed. Directly charge transfer from CNT to modifier on CNT surface and modifier trapped excitation energy from CNT was proposed as two key factors responsible for optical behavior of CNT-base material.
    To study the morphology and dopant effect on conductivity of MWNTs/PANI composite, MWNTs wrapped with polyanaline (MWPs) and aligned with polyanaline (MAPs) composites were prepared by using different addition sequence of oxidant. Systematic study demonstrated the orientation of polyanaline (PANI) long chains and the direction of electron transport in MWNTs and PANI played an important role in conductivity. At RT, the conductivity of MWPs was higher as PANI and MWNTs aligning parallel. However, at higher temperature de-doping resulted in decreasing conductivity. For MAPs, the perpendicular alignment between PANI and MWNTs resulted in lower conductivity at RT. At higher temperature, PANI short chains would switchover and got adsorbed on MWNTs to form a near parallel orientation. More aromatic amine of PANI would directly graft to MWNTs, resulting in increasing conductivity of MAPs. Similar morphology and dopant caused MWPs and MAPs to possess similar conductivity. The results indicate that morphology and dopant are critical for governing the conductivity of MWNTs/PANI composites at RT. At temperature above 150 oC, morphology becomes the dominant influencing factor.
    To study the photoluminescence tuning and stabilization of CdS nanoparticles by surface modification of tetra-aniline, 11-Mercaptoundecanoic acid (11-MUA) capped CdS and 11-MUA/ tetra-aniline capped CdS were prepared. The modification of the CdS surface with 11-MUA and tetra-aniline organic compounds increases the solubility and stability of CdS/11-MUA/TA particles. Decreasing band gap and enhancing spectroscopic properties by efficient charge-transfer between CdS and tetra-aniline was observed.
    To study atomic distribution in CdS nanoparticles by ToF-SIMS, the atomic distribution in the monolayer of two different Mn-doped CdS quantum dots (QDs) was studied for the first time with ToF-SIMS. The model Cd:Mn QDs were immobilized on Au substrate by use of a self-assembly-monolayer via 1,10-decanedithiol. Morphological analysis by SPM and TEM indicate larger particle size of in-situ synthesizing CdS:Mn. ToF-SIMS depth profile and 3D-images revel that Mn atoms reside on the surface of in-situ synthesizing CdS:Mn and are uniformly embedded in capped CdS:Mn. Comparable results obtained by SPM, TEM, XPS and ToF-SIMS are obtained, indicating that ToF-SIMS might find potential applications in surface and interface study of semiconductor nanocrystals.

    Chapter 1 Background and introduction 1 1.1 Carbon nanotubes 1 1.1.1 Morphology and preparation 1 1.1.2 Properties of carbon nanotubes 2 1.1.3 Applications of carbon nanotubes 4 1.2 Polyaniline 6 1.2.1 Morphology and characteristic 6 1.2.2 Synthesis 7 1.2.3 PANI/CNTs composites 7 1.3 Quantum Dots (QDs) 8 1.3.1 Physical and chemical properties of QDs 8 1.3.2 QDs on bio-application 9 1.3.3 QDs on electronic device application 9 1.4 References 11 1.5 Figures 19 Chapter 2 Thermoelectric properties of multi-walled carbon nanotubes-polyaniline 23 2.1 Introduction 23 2.2 Experiment 25 2.2.1 Aromatic amine group in MWNTs surface (MWNTs-(NC6H6)n, AA-MWNTs): 25 2.2.2 Polyaniline/ MWNTs-(NC6H6)n (PANI/AA-MWNTs) composite 25 2.2.3 PANI film on MWNTs-(NC6H6)n disc 26 2.2.4 Characterization 26 2.3 Results and discussion 27 2.3.1 Character of pristine and functional MWNTs 27 2.3.2 Morphology and composition study of PANI/AA-MWNTs composites 27 2.3.3 Thermoelectric powder (TEP) study 28 2.3.4 Thermal analysis 30 2.3.5 Polymerization efficiency of PANI /AA-MWNTs 30 2.3.6 Depth profile analysis of PANI /AA-MWNTs 31 2.3.7 Functionalized positions and density of active sites of PANI /AA-MWNTs 31 2.4 Conclusion 32 2.5 References 33 2.6 Figures 36 Chapter 3 Optical properties of multi-walled carbon nanotubes-polyaniline composite 43 3.1 Introduction 43 3.2 Experiment 44 3.2.1 Aromatic amine group on MWNTs surface (MWNTs-(NC6H6)n, AA-MWNTs): 44 3.2.2 Preparation of aniline contacted MWNTs (AC-MWNTs) 44 3.2.3 Synthesis of Polyaniline/AA-MWNTs (PANI/AA-MWNTs) composite 45 3.2.4 Synthesis of PANI/AC-MWNTs composite 45 3.2.5 Characterization 45 3.3 Result and discussion 46 3.3.1 The UV-Vis and luminescence spectrum of AA-MWNTs and AC-MWNTs 46 3.3.2 TEM image of PANI/AA-MWNTs and PANI/AC-MWNTs 47 3.3.3 The UV-Vis and luminescence spectrum of PANI/AA-MWNTs and PANI/AC-MWNTs 48 3.4 Conclusion 49 3.5 References 51 3.6 Figures 53 Chapter 4 Morphology and dopant governing conductivity on multi-walled carbon nanotubes-polyaniline composite 55 4.1 Introduction 55 4.2 Experiment 56 4.2.1 Materials 56 4.2.2 Preparation of oxidized MWNTs 56 4.2.3 Preparation of MWNTs wrapped with PANI (MWPs) 57 4.2.4 Preparation of MWNTs aligned with PANI (MAPs) 57 4.2.5 Characterization 57 4.3 Results and discussion 59 4.3.1 Morphological study 59 4.3.2 Thermal analysis 60 4.3.3 Conductivity study 61 4.3.4 X-ray diffraction 63 4.3.5 Fourier-transform infrared spectroscopy 63 4.3.6 X-ray photoelectron spectroscopy 64 4.3.7 TOF-SIMS 65 4.4 Conclusion 66 4.5 References 68 4.6 Figures 71 Chapter 5 Photoluminescence tuning and stabilization of CdS nanoparticles by surface modification of tetra-aniline 79 5.1 Introduction 79 5.2 Experiment 80 5.2.1 Synthesis of 11-Mercaptoundecanoic acid capped CdS nanoparticles (CdS/11-MUA) 80 5.2.2 Synthesis of 11-MUA and tetra-aniline capped CdS nanoparticles (CdS/11-MUA/TA) 80 5.2.3 Characterization 80 5.3 Result and discussion 81 5.3.1 Morphology study 81 5.3.2 Spectroscopy property 82 5.3.3 Photostability 83 5.3.4 X-ray photoelectron spectroscopy 84 5.4 Conclusion 85 5.5 References 86 5.6 Figures 89 Chapter 6 Atomic distribution in CdS nanoparticles by ToF-SIMS study 93 6.1 Introduction 93 6.2 Experimental 93 6.2.1 Preparation of CdS:Mn QDs absorbed on dithiol-Au substrate (CdS:Mn/ dithiol-Au) 93 6.2.2 Preparation of cetyltrimethylammonium bromide (CTAB) capped CdS:Mn (C-CdS:Mn) QDs absorbed on dithiol-Au layer (C-CdS:Mn/dithiol-Au) 94 6.2.3 SPM, TEM, ToF-SIMS and XPS Characterization 94 6.3 Results and discussion 95 6.3.1 SPM and TEM analysis 95 6.3.2 TOF-SIMS analysis 95 6.3.3 Diffusion study under simulated UV exposure 96 6.3.4 X-ray photoelectron spectropy 96 6.4 Conclusions 97 6.5 References 98 6.6 Figures 99 Chapter 7 Summary and Prespective 102

    Chapter 1
    [1] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56.
    [2] Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem.-Int. Edit. 2002, 41, 1853.
    [3] Zhou, O.; Fleming, R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A. P.; Glarum, S. H. Defects in Carbon Nanostructures. Science 1994, 263, 1744.
    [4] Hartschuh, A.; Pedrosa, H. N.; Peterson, J.; Huang, L.; Anger, P.; Qian, H.; Meixner, A. J.; Steiner, M.; Novotny, L.; Krauss, T. D. Single carbon nanotube optical spectroscopy. ChemPhysChem 2005, 6, 577.
    [5] Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y. A.; Van Lier, G.; Charlier, J. C.; Terrones, H.; Terrones, M.; Dresselhaus, M. S. Atomic nanotube welders: Boron interstitials triggering connections in double-walled carbon nanotubes. Nano Lett. 2005, 5, 1099.
    [6] Cumings, J.; Collins, P. G.; Zettl, A. Materials - Peeling and sharpening multiwall nanotubes. Nature 2000, 406, 586.
    [7] Ajayan, P. M.; Iijima, S. Smallest carbon nanotube. Nature 1992, 358, 23.
    [8] Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603.
    [9] Guo, T.; Nikolaev, P.; Rinzler, A. G.; Tomanek, D.; Colbert, D. T.; Smalley, R. E. Self-assembly of tubular fullerenes. J. Phys. Chem. 1995, 99, 10694.
    [10] Yacaman, M. J.; Yoshida, M. M.; Rendon, L.; Santiesteban, J. G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 1993, 62, 202.
    [11] Robertson, D. H.; Brenner, D. W.; Mintmire, J. W. Energetics of nanoscale graphitic tubules. Phys. Rev. B 1992, 45, 12592.
    [12] Poncharal, P.; Wang, Z. L.; Ugarte, D.; de Heer, W. A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513.
    [13] Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637.
    [14] Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552.
    [15] Hernandez, E.; Goze, C.; Bernier, P.; Rubio, A. Elastic properties of single-wall nanotubes. Appl. Phys. A-Mater. Sci. Process. 1999, 68, 287.
    [16] Cumings, J.; Zettl, A. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science 2000, 289, 602.
    [17] Falvo, M. R.; Clary, G. J.; Taylor, R. M.; Chi, V.; Brooks, F. P.; Washburn, S.; Superfine, R. Bending and buckling of carbon nanotubes under large strain. Nature 1997, 389, 582.
    [18] Jacobsen, R. L.; Tritt, T. M.; Guth, J. R.; Ehrlich, A. C.; Gillespie, D. J. Mechanical-Properties Of Vapor-Grown Carbon-Fiber. Carbon 1995, 33, 1217.
    [19] Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971.
    [20] Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes - the route toward applications. Science 2002, 297, 787.
    [21] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801.
    [22] Lee, R. S.; Kim, H. J.; Fischer, J. E.; Thess, A.; Smalley, R. E. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature 1997, 388, 255.
    [23] Bockrath, M.; Hone, J.; Zettl, A.; McEuen, P. L.; Rinzler, A. G.; Smalley, R. E. Chemical doping of individual semiconducting carbon-nanotube ropes. Phys. Rev. B 2000, 61, 10606.
    [24] Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54.
    [25] Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654.
    [26] White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240.
    [27] Kong, J.; Yenilmez, E.; Tombler, T. W.; Kim, W.; Dai, H. J.; Laughlin, R. B.; Liu, L.; Jayanthi, C. S.; Wu, S. Y. Quantum interference and ballistic transmission in nanotube electron waveguides. Phys. Rev. Lett. 2001, 8710, art. no. 106801.
    [28] Liang, W. J.; Shores, M. P.; Bockrath, M.; Long, J. R.; Park, H. Kondo resonance in a single-molecule transistor. Nature 2002, 417, 725.
    [29] LeRoy, B. J.; Lemay, S. G.; Kong, J.; Dekker, C. Electrical generation and absorption of phonons in carbon nanotubes. Nature 2004, 432, 371.
    [30] Berber, S.; Kwon, Y. K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613.
    [31] Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 1999, 59, R2514.
    [32] Shi, L.; Li, D. Y.; Yu, C. H.; Jang, W. Y.; Kim, D.; Yao, Z.; Kim, P.; Majumdar, A. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf.-Trans. ASME 2003, 125, 881.
    [33] Kim, P.; Shi, L.; Majumdar, A.; McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 2001, 8721.
    [34] Kociak, M.; Kasumov, A. Y.; Gueron, S.; Reulet, B.; Khodos, II; Gorbatov, Y. B.; Volkov, V. T.; Vaccarini, L.; Bouchiat, H. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 2416.
    [35] Tang, Z. K.; Zhang, L. Y.; Wang, N.; Zhang, X. X.; Wen, G. H.; Li, G. D.; Wang, J. N.; Chan, C. T.; Sheng, P. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 2001, 292, 2462.
    [36] Jarillo-Herrero, P.; Sapmaz, S.; Dekker, C.; Kouwenhoven, L. P.; van der Zant, H. S. J. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 2004, 429, 389.
    [37] Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361.
    [38] O'connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593.
    [39] Hartschuh, A.; Pedrosa, H. N.; Novotny, L.; Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 2003, 301, 1354.
    [40] Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95.
    [41] Guldi, D. M.; Rahman, G. M. A.; Jux, N.; Balbinot, D.; Hartnagel, U.; Tagmatarchis, N.; Prato, M. Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems. J. Am. Chem. Soc. 2005, 127, 9830.
    [42] Riggs, J. E.; Guo, Z. X.; Carroll, D. L.; Sun, Y. P. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 2000, 122, 5879.
    [43] Riggs, J. E.; Walker, D. B.; Carroll, D. L.; Sun, Y. P. Optical limiting properties of suspended and solubilized carbon nanotubes. J. Phys. Chem. B 2000, 104, 7071.
    [44] Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996, 381, 678.
    [45] Trindade, T.; O'Brien, P.; Pickett, N. L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mat. 2001, 13, 3843.
    [46] Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Johnson, A. T.; Fischer, J. E. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767.
    [47] Qian, D.; Dickey, E. C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868.
    [48] Dai, L. M.; Soundarrajan, P.; Kim, T. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl. Chem. 2002, 74, 1753.
    [49] Dominique, N. D.; Fabienne, P. E. Polyaniline as a new sensitive layer for gas sensors. Analytica Chimica Acta 2003, 475, 1.
    [50] Sumanasekera, G. U.; Adu, C. K. W.; Fang, S.; Eklund, P. C. Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 1096.
    [51] Adu, C. K. W.; Sumanasekera, G. U.; Pradhan, B. K.; Romero, H. E.; Eklund, P. C. Carbon nanotubes: A thermoelectric nano-nose. Chem. Phys. Lett. 2001, 337, 31.
    [52] Lourie, O.; Wagner, H. D. Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 1998, 13, 2418.
    [53] Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147.
    [54] Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature 1998, 394, 52.
    [55] Rosen, R.; Simendinger, W.; Debbault, C.; Shimoda, H.; Fleming, L.; Stoner, B.; Zhou, O. Application of carbon nanotubes as electrodes in gas discharge tubes. Appl. Phys. Lett. 2000, 76, 1668.
    [56] Saito, Y.; Uemura, S. Field emission from carbon nanotubes and its application to electron sources. Carbon 2000, 38, 169.
    [57] Tans, S. J.; Dekker, C. Molecular transistors - Potential modulations along carbon nanotubes. Nature 2000, 404, 834.
    [58] Dai, L. M.; Winkler, B.; Dong, L. M.; Tong, L.; Mau, A. W. H. Conjugated polymers for light-emitting applications. Adv. Mater. 2001, 13, 915.
    [59] Gerard, M.; Chaubey, A.; Malhotra, B. D. Application of conducting polymers to biosensors. Biosens. Bioelectron. 2002, 17, 345.
    [60] Trojanowicz, M. Application of conducting polymers in chemical analysis. Microchim. Acta 2003, 143, 75.
    [61] Wang, Y. Y.; Jing, X. L. Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 2005, 16, 344.
    [62] Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Dimercaptan-Polyaniline Composite Electrodes For Lithium Batteries With High-Energy Density. Nature 1995, 373, 598.
    [63] Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Wang, Y. D.; Yang, H. X. A composite polymer membrane with reversible overcharge protection mechanism for lithium ion batteries. Electrochem. Commun. 2005, 7, 589.
    [64] Jager, E. W. H.; Smela, E.; Inganas, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540.
    [65] Hohnholz, D.; Okuzaki, H.; MacDiarmid, A. G. Plastic electronic devices through line patterning of conducting polymers. Adv. Funct. Mater. 2005, 15, 51.
    [66] Franzen, P. L.; De Boni, L.; Santos, D. S.; Mendonca, C. R.; Zilio, S. C. Dynamic optical nonlinearities in aniline tetramers. J. Phys. Chem. B 2004, 108, 19180.
    [67] Stejskal, J.; Hlavata, D.; Holler, P.; Trchova, M.; Prokes, J.; Sapurina, I. Polyaniline prepared in the presence of various acids: a conductivity study. Polym. Int. 2004, 53, 294.
    [68] Heeger, A. J. Semiconducting and metallic polymers: The fourth generation of polymeric materials. J. Phys. Chem. B 2001, 105, 8475.
    [69] Long, Y.; Chen, Z. J.; Wang, N. L.; Ma, Y. J.; Zhang, Z.; Zhang, L. J.; Wan, M. X. Electrical conductivity of a single conducting polyaniline nanotube. Appl. Phys. Lett. 2003, 83, 1863.
    [70] Zhang, L. J.; Wan, M. X. Self-assembly of polyaniline - From nanotubes to hollow microspheres. Adv. Funct. Mater. 2003, 13, 815.
    [71] Gospodinova, N.; Terlemezyan, L. Conducting polymers prepared by oxidative polymerization: Polyaniline. Prog. Polym. Sci. 1998, 23, 1443.
    [72] Huang, M. J.; Tai, C.; Zhou, Q. F.; Jiang, G. B. Preparation of polyaniline coating on a stainless-steel wire using electroplating and its application to the determination of six aromatic amines using headspace solid-phase microextraction. J. Chromato. A 2004, 1048, 257.
    [73] Wang, J.; Chan, S.; Carlson, R. R.; Luo, Y.; Ge, G. L.; Ries, R. S.; Heath, J. R.; Tseng, H. R. Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett. 2004, 4, 1693.
    [74] Tian, S. J.; Liu, J. Y.; Zhu, T.; Knoll, W. Polyaniline/gold nanoparticle multilayer films: Assembly, properties, and biological applications. Chem. Mat. 2004, 16, 4103.
    [75] Zhang, X. Y.; Goux, W. J.; Manohar, S. K. Synthesis of polyaniline nanofibers by "nanofiber seeding". J. Am. Chem. Soc. 2004, 126, 4502.
    [76] Wang, Z. H.; Li, C.; Scherr, E. M.; Macdiarmid, A. G.; Epstein, A. J. 3 Dimensionality of Metallic States in Conducting Polymers - Polyaniline. Phys. Rev. Lett. 1991, 66, 1745.
    [77] Frank, S.; Poncharal, P.; Wang, Z. L.; de Heer, W. A. Carbon nanotube quantum resistors. Science 1998, 280, 1744.
    [78] Blanchet, G. B.; Fincher, C. R.; Gao, F. Polyaniline nanotube composites: A high-resolution printable conductor. Appl. Phys. Lett. 2003, 82, 1290.
    [79] An, K. H.; Jeong, S. Y.; Hwang, H. R.; Lee, Y. H. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv. Mater. 2004, 16, 1005.
    [80] Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A. Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl. Phys. Lett. 2003, 83, 4244.
    [81] Ramamurthy, P. C.; Malshe, A. M.; Harrell, W. R.; Gregory, R. V.; McGuire, K.; Rao, A. M. Polyaniline/single-walled carbon nanotube composite electronic devices. Solid State Electro. 2004, 48, 2019.
    [82] Zhao, B.; Hu, H.; Haddon, R. C. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Adv. Funct. Mater. 2004, 14, 71.
    [83] Zhou, Y. K.; He, B. L.; Zhou, W. J.; Li, H. L. Preparation and Electrochemistry of SWNT/PANI composite films for electrochemical capacitors. J. Electrochem. Soc. 2004, 151, A1052.
    [84] Downs, C.; Nugent, J.; Ajayan, P. M.; Duquette, D. J.; Santhanam, S. V. Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. 1999, 11, 1028.
    [85] Sainz, R.; Benito, A. M.; Martinez, M. T.; Galindo, J. F.; Sotres, J.; Baro, A. M.; Corraze, B.; Chauvet, O.; Maser, W. K. Soluble self-aligned carbon nanotube/polyaniline composites. Adv. Mater. 2005, 17, 278.
    [86] Zhang, X. T.; Lu, Z.; Wen, M. T.; Liang, H.; Zhang, J.; Liu, Z. F. Single-walled carbon nanotube-based coaxial nanowires: Synthesis, characterization, and electrical properties. J. Phys. Chem. B 2005, 109, 1101.
    [87] Esteves, A. C. C.; Trindade, T. Synthetic studies on II/VI semiconductor quantum dots. Curr. Opin. Solid State Mat. Sci. 2002, 6, 347.
    [88] Gaponik, N. P.; Talapin, D. V.; Rogach, A. L.; Eychmuller, A. Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications. J. Mater. Chem. 2000, 10, 2163.
    [89] Ozasa, K.; Aoyagi, Y.; Yamane, A.; Arai, Y. Enhanced photoluminescence of InGaAs/GaAs quantum dots induced by nanoprobe pressure effects. Appl. Phys. Lett. 2003, 83, 2247.
    [90] Ni, T.; Nagesha, D. K.; Robles, J.; Materer, N. F.; Mussig, S.; Kotov, N. A. CdS nanoparticles modified to chalcogen sites: New supramolecular complexes, butterfly bridging, and related optical effects. J. Am. Chem. Soc. 2002, 124, 3980.
    [91] Green, M. Organometallic based strategies for metal nanocrystal synthesis. Chem. Commun. 2005, 3002.
    [92] Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47.
    [93] Ozkan, M. Quantum dots and other nanoparticles: what can they offer to drug discovery? Drug Discov. Today 2004, 9, 1065.
    [94] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435.
    [95] Reiss, P.; Bleuse, J.; Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2, 781.
    [96] Wu, X. C.; Bittner, A. M.; Kern, K. Microcontact printing of CdS/dendrimer nanocomposite patterns on silicon wafers. Adv. Mater. 2004, 16, 413.
    [97] Tanaka, M.; Qi, J. F.; Masumoto, Y. Optical properties of undoped and Mn2+-doped CdS nanocrystals in polymer. J. Cryst. Growth 2000, 214, 410.
    [98] Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336.
    [99] Chen, W.; Zhang, J. Z.; Joly, A. G. Optical properties and potential applications of doped semiconductor nanoparticles. J. Nanosci. Nanotechnol. 2004, 4, 919.
    [100] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013.
    [101] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759.
    [102] Parak, W. J.; Boudreau, R.; Le Gros, M.; Gerion, D.; Zanchet, D.; Micheel, C. M.; Williams, S. C.; Alivisatos, A. P.; Larabell, C. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mater. 2002, 14, 882.
    [103] Wu, X. Y.; Liu, H. J.; Liu, J. Q.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N. F.; Peale, F.; Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2003, 21, 41.
    [104] Taylor, J. R.; Fang, M. M.; Nie, S. M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem. 2000, 72, 1979.
    [105] Maxwell, D. J.; Taylor, J. R.; Nie, S. M. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 2002, 124, 9606.
    [106] Soeller, C.; Peng, H.; Cannell, M. B.; Travas-Sejdic, J. Novel DNA sensors with electrical read-out based on conducting polymers and quantum dots. Biophys. J. 2005, 88, 529A.
    [107] Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800.
    [108] Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J. Hybrid polymer solar cells based on zinc oxide. J. Mater. Chem. 2005, 15, 2985.
    [109] Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274.
    [110] Chaudhary, S. C.; Ozkan, M.; Chan, W. C. W. Trilayer hybrid polymer-quantum dot light-emitting diodes. Appl. Phys. Lett. 2004, 84, 2925.
    [111] Godovsky, D. Y.; Varfolomeev, A. E.; Zaretsky, D. F.; Chandrakanthi, R. L. N.; Kundig, A.; Weder, C.; Caseri, W. Preparation of nanocomposites of polyaniline and inorganic semiconductors. J. Mater. Chem. 2001, 11, 2465.
    [112] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425.

    Chapter 2
    [1] DiSalvo, F. J. Thermoelectric cooling and power generation. Science 1999, 285, 703.
    [2] Vining, C. B. Condensed-matter physics - Thermopower to the people. Nature 2003, 423, 391.
    [3] Tani, T.; Isobe, S.; Seo, W. S.; Koumoto, K. Thermoelectric properties of highly textured (ZnO)(5)In2O3 ceramics. J. Mater. Chem. 2001, 11, 2324.
    [4] Feng, J.; Ellis, T. W. Feasibility study of conjugated polymer nano-composites for thermoelectrics. Synth. Met. 2003, 135, 55.
    [5] Imai, H.; Shimakawa, Y.; Kubo, Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys. Rev. B 2001, 64.
    [6] Tajima, S.; Tani, T.; Isobe, S.; Koumoto, K. Thermoelectric properties of highly textured NaCo2O4 ceramics processed by the reactive templated grain growth (RTGG) method. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2001, 86, 20.
    [7] Vining, C. B. Semiconductors are cool. Nature 2001, 413, 577.
    [8] Feng, J.; Ellis, T. W. Thermal management for semiconductor devices with conductive polymers. Synth. Met. 2003, 135, 155.
    [9] Yoon, C. O.; Reghu, M.; Moses, D.; Heeger, a. J.; Cao, Y. Counterion-Induced Processibility of Polyaniline - Thermoelectric-Power. Phys. Rev. B 1993, 48, 14080.
    [10] Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.; Terrones, H.; Tekleab, D.; Ajayan, P. M.; Blau, W.; Ruhle, M.; Carroll, D. L. Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 2001, 1, 457.
    [11] Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56.
    [12] Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Aligned multiwalled carbon nanotube membranes. Science 2004, 303, 62.
    [13] Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851.
    [14] Zengin, H.; Zhou, W. S.; Jin, J. Y.; Czerw, R.; Smith, D. W.; Echegoyen, L.; Carroll, D. L.; Foulger, S. H.; Ballato, J. Carbon nanotube doped polyaniline. Adv. Mater. 2002, 14, 1480.
    [15] Wei, Z. X.; Wan, M. X.; Lin, T.; Dai, L. M. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv. Mater. 2003, 15, 136.
    [16] Gao, M.; Huang, S. M.; Dai, L. M.; Wallace, G.; Gao, R. P.; Wang, Z. L. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew Chem Int Edit 2000, 39, 3664.
    [17] Downs, C.; Nugent, J.; Ajayan, P. M.; Duquette, D. J.; Santhanam, S. V. Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. 1999, 11, 1028.
    [18] Feng, W.; Bai, X. D.; Lian, Y. Q.; Liang, J.; Wang, X. G.; Yoshino, K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 2003, 41, 1551.
    [19] Choi, Y. M.; Lee, D. S.; Czerw, R.; Chiu, P. W.; Grobert, N.; Terrones, M.; Reyes-Reyes, M.; Terrones, H.; Charlier, J. C.; Ajayan, P. M.; Roth, S.; Carroll, D. L.; Park, Y. W. Nonlinear behavior in the thermopower of doped carbon nanotubes due to strong, localized states. Nano Lett. 2003, 3, 839.
    [20] Sadanadan, B.; Savage, T.; Bhattacharya, S.; Tritt, T.; Cassell, A.; Meyyappan, M.; Dai, Z. R.; Wang, Z. L.; Zidan, R.; Rao, A. M. Synthesis and thermoelectric power of nitrogen-doped carbon nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 99.
    [21] Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801.
    [22] Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K. J.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622.
    [23] Sumanasekera, G. U.; Adu, C. K. W.; Fang, S.; Eklund, P. C. Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 85, 1096.
    [24] Zhu, X. Y.; Lee, S. M.; Lee, Y. H.; Frauenheim, T. Adsorption and desorption of an O-2 molecule on carbon nanotubes. Phys. Rev. Lett. 2000, 85, 2757.
    [25] Chang, J. Y.; Ghule, A.; Chang, J. J.; Tzing, S. H.; Ling, Y. C. Opening and thinning of multiwall carbon nanotubes in supercritical water. Chem. Phys. Lett. 2002, 363, 583.
    [26] Cochet, M.; Maser, W. K.; Benito, A. M.; Callejas, M. A.; Martinez, M. T.; Benoit, J. M.; Schreiber, J.; Chauvet, O. Synthesis of a new polyaniline/nanotube composite: "in-situ" polymerisation and charge transfer through site-selective interaction. Chem Commun 2001, 1450.
    [27] Gangopadhyay, R.; De, A.; Das, S. Transport properties of polypyrrole-ferric oxide conducting nanocomposites. J. Appl. Phys. 2000, 87, 2363.
    [28] Belin, T.; Epron, R. Characterization methods of carbon nanotubes: a review. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 2005, 119, 105.
    [29] Sun, Y.; Wilson, S. R.; Schuster, D. I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J. Am. Chem. Soc. 2001, 123, 5348.
    [30] Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew Chem Int Edit 2002, 41, 1853.
    [31] Baibarac, M.; Baltog, I.; Lefrant, S.; Mevellec, J. Y.; Chauvet, O. Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem Mater 2003, 15, 4149.
    [32] Feng, W.; Zhou, F.; Wang, X. G.; Bai, X. D.; Liang, J.; Yoshino, K. Fabrication of composite films by controlling molecular doping processes between polyaniline and soluble multiwalled nanotubes and their optical characteristics. Jpn. J. Appl. Phys. 2003, 42, 5726.
    [33] Rogers, S. A.; Kaiser, A. B. Thermopower and resistivity of carbon nanotube networks and organic conducting polymers. Curr. Appl. Phys. 2004, 4, 407.
    [34] Kang, N.; Lu, L.; Kong, W. J.; Hu, J. S.; Yi, W.; Wang, Y. P.; Zhang, D. L.; Pan, Z. W.; Xie, S. S. Observation of a logarithmic temperature dependence of thermoelectric power in multiwall carbon nanotubes. Phys. Rev. B 2003, 67, 033404.
    [35] Czerw, R.; Chiu, P. W.; Choi, Y. M.; Lee, D. S.; Carroll, D. L.; Roth, S.; Park, Y. W. Substitutional boron-doping of carbon nanotubes. Curr. Appl. Phys. 2002, 2, 473.
    [36] Sumanasekera, G. U.; Pradhan, B. K.; Romero, H. E.; Adu, K. W.; Eklund, P. C. Giant thermopower effects from molecular physisorption on carbon nanotubes. Phys. Rev. Lett. 2002, 89, 166801.
    [37] Prokes, J.; Trchova, M.; Hlavata, D.; Stejskal, J. Conductivity ageing in temperature-cycled polyaniline. Polym Degrad Stabil 2002, 78, 393.
    [38] Philip, B.; Xie, J. N.; Abraham, J. K.; Varadan, V. K. Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polymer Bulletin 2005, 53, 127.
    [39] Sainz, R.; Benito, A. M.; Martinez, M. T.; Galindo, J. F.; Sotres, J.; Baro, A. M.; Corraze, B.; Chauvet, O.; Maser, W. K. Soluble self-aligned carbon nanotube/polyaniline composites. Adv. Mater. 2005, 17, 278.

    Chapter 3
    [1] Misewich, J. A.; Martel, R.; Avouris, P.; Tsang, J. C.; Heinze, S.; Tersoff, J. Electrically induced optical emission from a carbon nanotube FET. Science 2003, 300, 783.
    [2] Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361.
    [3] Wang, F.; Dukovic, G.; Brus, L. E.; Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838.
    [4] O'connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J. P.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593.
    [5] Hartschuh, A.; Pedrosa, H. N.; Peterson, J.; Huang, L.; Anger, P.; Qian, H.; Meixner, A. J.; Steiner, M.; Novotny, L.; Krauss, T. D. Single carbon nanotube optical spectroscopy. ChemPhysChem 2005, 6, 577.
    [6] Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713.
    [7] Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y. S.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Solution properties of single-walled carbon nanotubes. Science 1998, 282, 95.
    [8] Hamon, M. A.; Chen, J.; Hu, H.; Chen, Y. S.; Itkis, M. E.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Dissolution of single-walled carbon nanotubes. Adv. Mater. 1999, 11, 834.
    [9] Zhao, B.; Hu, H.; Haddon, R. C. Synthesis and properties of a water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) graft copolymer. Adv. Funct. Mater. 2004, 14, 71.
    [10] Wu, X. F.; Shi, G. Q. Synthesis of a carboxyl-containing conducting oligomer and non-covalent sidewall functionalization of single-walled carbon nanotubes. J. Mater. Chem. 2005, 15, 1833.
    [11] Sun, Y.; Wilson, S. R.; Schuster, D. I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J. Am. Chem. Soc. 2001, 123, 5348.
    [12] Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 1999, 103, 8116.
    [13] Feng, W.; Kamide, K.; Zhou, F.; Araki, H.; Wang, X. G.; Yoshino, K. Optical and field emission investigations for multiwalled carbon nanotubes with different functionalized groups. Jpn. J. Appl. Phys. 2004, 43, L36.
    [14] Rao, A. M.; Eklund, P. C.; Bandow, S.; Thess, A.; Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 1997, 388, 257.
    [15] Riggs, J. E.; Guo, Z. X.; Carroll, D. L.; Sun, Y. P. Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 2000, 122, 5879.
    [16] Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem.-Int. Edit. 2003, 42, 4908.
    [17] Chen, W. Y.; Chen, C. Y.; Hsu, K. Y.; Wang, C. C.; Ling, Y. C. Reaction monitoring of polyaniline film formation on carbon nanotubes with TOF-SIMS. Appl. Surf. Sci. 2004, 231-2, 845.
    [18] Zhang, X. Y.; Goux, W. J.; Manohar, S. K. Synthesis of polyaniline nanofibers by "nanofiber seeding". J. Am. Chem. Soc. 2004, 126, 4502.
    [19] Huang, K.; Wan, M. X. Self-Assembled polyaniline nanostructure with photoisomerization function. Chem. Mater. 2002, 14, 3486.
    [20] Zhao, J. J.; Lu, J. P.; Han, J.; Yang, C. K. Noncovalent functionalization of carbon nanotubes by aromatic organic molecules. Appl. Phys. Lett. 2003, 82, 3746.
    [21] Wang, Z. W.; Liu, C. L.; Liu, Z. G.; Xiang, H.; Li, Z.; Gong, Q. H. pi-pi interaction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites. Chem. Phys. Lett. 2005, 407, 35.
    [22] Bavastrello, V.; Carrara, S.; Ram, M. K.; Nicolini, C. Optical and electrochemical properties of poly(o-toluidine) multiwalled carbon nanotubes composite Langmuir-Schaefer films. Langmuir 2004, 20, 969.

    Chapter 4
    [1] Shirakawa, H.; Louis, E.; MacDiarmid, A.; Chiang, C.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 578.
    [2] Ikkala, O.; ten Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407.
    [3] Jager, E. W. H.; Smela, E.; Inganas, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540.
    [4] Oyama, N.; Tatsuma, T.; Sato, T.; Sotomura, T. Dimercaptan-Polyaniline Composite Electrodes for Lithium Batteries with High-Energy Density (Vol 373, Pg 598, 1995). Nature 1995, 374, 196.
    [5] Lu, W.; Fadeev, A. G.; Qi, B. H.; Smela, E.; Mattes, B. R.; Ding, J.; Spinks, G. M.; Mazurkiewicz, J.; Zhou, D. Z.; Wallace, G. G.; MacFarlane, D. R.; Forsyth, S. A.; Forsyth, M. Use of ionic liquids for pi-conjugated polymer electrochemical devices. Science 2002, 297, 983.
    [6] Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851.
    [7] Long, Y.; Chen, Z. J.; Wang, N. L.; Ma, Y. J.; Zhang, Z.; Zhang, L. J.; Wan, M. X. Electrical conductivity of a single conducting polyaniline nanotube. Appl. Phys. Lett. 2003, 83, 1863.
    [8] Lee, C. W.; Kim, Y. B.; Lee, S. H. Synthesis and properties of tailor-made supramolecular photo acid generators for conducting patterns of polyaniline. Chem. Lett. 2005, 17, 366.
    [9] Chandrasekhar, P.; Naishadham, K. Broadband microwave absorption and shielding properties of a polyaniline. Synth. Met. 1999, 105, 115.
    [10] Dai, L. M.; Winkler, B.; Dong, L. M.; Tong, L.; Mau, A. W. H. Conjugated polymers for light-emitting applications. Adv. Mater. 2001, 13, 915.
    [11] Dai, L. M.; Soundarrajan, P.; Kim, T. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure Appl. Chem. 2002, 74, 1753.
    [12] Prokes, J.; Trchova, M.; Hlavata, D.; Stejskal, J. Conductivity ageing in temperature-cycled polyaniline. Polym. Degrad. Stabil. 2002, 78, 393.
    [13] Philip, B.; Xie, J. I.; Abraham, J. K.; Varadan, V. K. A new synthetic route to enhance polyaniline assembly on carbon nanotubes in tubular composites. Smart Mater. Struct. 2004, 13, N105.
    [14] Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.
    [15] Biercuk, M. J.; Llaguno, M. C.; Radosavljevic, M.; Hyun, J. K.; Fischer, J. E.; Johnson, A. T. Carbon nanotube composites for thermal management. Appl. Phys. Lett. 2002, 80, 2767.
    [16] Hwang, G. L.; Hwang, K. C. Breakage, fusion and healing of carbon nanotubes. Nano Lett. 2001, 8, 435.
    [17] Sainz, R.; Benito, A. M.; Martinez, M. T.; Galindo, J. F.; Sotres, J.; Baro, A. M.; Corraze, B.; Chauvet, O.; Maser, W. K. Soluble self-aligned carbon nanotube/polyaniline composites. Adv. Mater. 2005, 17, 278.
    [18] Blanchet, G. B.; Fincher, C. R.; Gao, F. Polyaniline nanotube composites: A high-resolution printable conductor. Appl. Phys. Lett. 2003, 82, 1290.
    [19] Blanchet, G. B.; Subramoney, S.; Bailey, R. K.; Jaycox, G. D.; Nuckolls, C. Self-assembled three-dimensional conducting network of single-wall carbon nanotubes. Applied Physics Letters 2004, 85, 828.
    [20] Wang, J.; Chan, S.; Carlson, R. R.; Luo, Y.; Ge, G. L.; Ries, R. S.; Heath, J. R.; Tseng, H. R. Electrochemically fabricated polyaniline nanoframework electrode junctions that function as resistive sensors. Nano Lett. 2004, 4, 1693.
    [21] Wu, T. M.; Lin, Y. W.; Liao, C. S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon 2005, 43, 734.
    [22] Cochet, M.; Maser, W. K.; Benito, A. M.; Callejas, M. A.; Martinez, M. T.; Benoit, J. M.; Schreiber, J.; Chauvet, O. Synthesis of a new polyaniline/nanotube composite: "in-situ" polymerisation and charge transfer through site-selective interaction. Chem. Commun. 2001, 1450.
    [23] Zhou, Y. K.; He, B. L.; Zhou, W. J.; Huang, J.; Li, X. H.; Wu, B.; Li, H. I. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochim. Acta 2004, 49, 257.
    [24] Hassanien, A.; Gao, M.; Tokumoto, M.; Dai, L. Scanning tunneling microscopy of aligned coaxial nanowires of polyaniline passivated carbon nanotubes. Chem. Phys. Lett. 2001, 342, 479.
    [25] Zhang, X. T.; Lu, Z.; Wen, M. T.; Liang, H.; Zhang, J.; Liu, Z. F. Single-walled carbon nanotube-based coaxial nanowires: Synthesis, characterization, and electrical properties. J. Phys. Chem. B 2005, 109, 1101.
    [26] Feng, W.; Zhou, F.; Wang, X. G.; Bai, X. D.; Liang, J.; Yoshino, K. Fabrication of composite films by controlling molecular doping processes between polyaniline and soluble multiwalled nanotubes and their optical characteristics. Jpn. J. Appl. Phys. 2003, 42, 5726.
    [27] Wei, Z. X.; Wan, M. X.; Lin, T.; Dai, L. M. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self-assembly process. Adv. Mater. 2003, 15, 136.
    [28] Chen, W. Y.; Chen, C. Y.; Hsu, K. Y.; Wang, C. C.; Ling, Y. C. Reaction monitoring of polyaniline film formation on carbon nanotubes with TOF-SIMS. Appl. Surf. Sci. 2004, 231-2, 845.
    [29] Zengin, H.; Zhou, W. S.; Jin, J. Y.; Czerw, R.; Smith, D. W.; Echegoyen, L.; Carroll, D. L.; Foulger, S. H.; Ballato, J. Carbon nanotube doped polyaniline. Adv. Mater. 2002, 14, 1480.
    [30] Long, Y. Z.; Chen, Z. J.; Zhang, X. T.; Zhang, J.; Liu, Z. F. Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl. Phys. Lett. 2004, 85, 1796.
    [31] Van Der Pauw, L. J. A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res. Rep. 1958, 13, 1.
    [32] Zhang, X. Y.; Goux, W. J.; Manohar, S. K. Synthesis of polyaniline nanofibers by "nanofiber seeding". J. Am. Chem. Soc. 2004, 126, 4502.
    [33] Zhang, Z. M.; Wei, Z. X.; Wan, M. X. Nanostructures of polyaniline doped with inorganic acids. Macromolecules 2002, 35, 5937.
    [34] Zhang, L. J.; Wan, M. X. Polyaniline/TiO2 composite nanotubes. J. Phys. Chem. B 2003, 107, 6748.
    [35] Hinrich, J.; Helfrich, W. Chem. Rev. 1993, 93, 1565.
    [36] Dominique, N. D.; Fabienne, P. E. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1.
    [37] Ghosh, M.; Barman, A. K.; K., M. S.; De, S. K.; Chatterjee, S.; Chattopadhyay, S. K. J. Appl. Polym. Sci. 2000, 75, 1480.
    [38] Feng, W.; Bai, X. D.; Lian, Y. Q.; Liang, J.; Wang, X. G.; Yoshino, K. Well-aligned polyaniline/carbon-nanotube composite films grown by in-situ aniline polymerization. Carbon 2003, 41, 1551.
    [39] Philip, B.; Xie, J. N.; Abraham, J. K.; Varadan, V. K. Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym. Bull. 2005, 53, 127.
    [40] Cumings, J.; Collins, P. G.; Zettl, A. Materials - Peeling and sharpening multiwall nanotubes. Nature 2000, 406, 586.
    [41] Baibarac, M.; Baltog, I.; Lefrant, S.; Mevellec, J. Y.; Chauvet, O. Polyaniline and carbon nanotubes based composites containing whole units and fragments of nanotubes. Chem. Lett. 2003, 15, 4149.
    [42] Pouget, J. P.; Jozefowicz, M. E.; Epstein, A. J.; Tang, X.; Macdiarmid, A. G. X-Ray Structure of Polyaniline. Macromolecules 1991, 24, 779.
    [43] Ghule, A. V.; Ghule, K.; Chen, C. Y.; Chen, W. Y.; Tzing, S. H.; Chang, H.; Ling, Y. C. In situ thermo-TOF-SIMS study of thermal decomposition of zinc acetate dihydrate. J. Mass Spectrom. 2004, 39, 1202.

    Chapter 5
    [1] Chan, Y.; Steckel, J. S.; Snee, P. T.; Caruge, J. M.; Hodgkiss, J. M.; Nocera, D. G.; Bawendi, M. G. Blue semiconductor nanocrystal laser. Appl. Phys. Lett. 2005, 86.
    [2] Mulvaney, S. P.; Mattoussi, H. M.; Whitman, L. J. Incorporating fluorescent dyes and quantum dots into magnetic microbeads for immunoassays. Biotechniques 2004, 36, 602.
    [3] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013.
    [4] Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47.
    [5] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435.
    [6] Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630.
    [7] Tang, H. X.; M., Y.; Zhang, H.; M., X.; D., Y. Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine. Mater. Lett. 2005, 2005, 1024.
    [8] Qi, L. M.; Colfen, H.; Antonietti, M. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett. 2001, 1, 61.
    [9] Ni, T.; Nagesha, D. K.; Robles, J.; Materer, N. F.; Mussig, S.; Kotov, N. A. CdS nanoparticles modified to chalcogen sites: New supramolecular complexes, butterfly bridging, and related optical effects. J. Am. Chem. Soc. 2002, 124, 3980.
    [10] Jang, E.; Jun, S.; Chung, Y. S.; Pu, L. S. Surface treatment to enhance the quantum efficiency of semiconductor nanocrystals. J. Phys. Chem. B 2004, 108, 4597.
    [11] Querner, C.; Reiss, P.; Bleuse, J.; Pron, A. Chelating Ligands for nanocrystals' surface functionalization. J. Am. Chem. Soc. 2004, 126, 11574.
    [12] Reiss, P.; Bleuse, J.; Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2, 781.
    [13] Chen, Y. F.; Rosenzweig, Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Lett. 2002, 2, 1299.
    [14] Jeng, U. S.; Sun, Y. S.; Lee, H. Y.; Hsu, C. H.; Liang, K. S.; Yeh, S. W.; Wei, K. H. Binding effect of surface-modified cadmium sulfide on the microstructure of PS-b-PEO block copolymers. Macromolecules 2004, 37, 4617.
    [15] Wu, X. C.; Bittner, A. M.; Kern, K. Microcontact printing of CdS/dendrimer nanocomposite patterns on silicon wafers. Adv. Mater. 2004, 16, 413.
    [16] Coe, S.; Woo, W. K.; Bawendi, M.; Bulovic, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002, 420, 800.
    [17] Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274.
    [18] Long, Y.; Chen, Z. J.; Wang, N. L.; Ma, Y. J.; Zhang, Z.; Zhang, L. J.; Wan, M. X. Electrical conductivity of a single conducting polyaniline nanotube. Appl. Phys. Lett. 2003, 83, 1863.
    [19] Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851.
    [20] Godovsky, D. Y.; Varfolomeev, A. E.; Zaretsky, D. F.; Chandrakanthi, R. L. N.; Kundig, A.; Weder, C.; Caseri, W. Preparation of nanocomposites of polyaniline and inorganic semiconductors. J. Mater. Chem. 2001, 11, 2465.
    [21] Ma, X. Y.; Lu, G. X.; Yang, B. J. Study of the luminescence characteristics of cadmium sulfide quantum dots in a sulfonic group polyaniline (SPAn) film. Appl. Surf. Sci. 2002, 187, 235.
    [22] Wang, Y.; Herron, N. Semiconductor nanocrystals in carrier-transporting polymers. Charge generation and charge transport. J. Lumines. 1996, 70, 48.
    [23] Aldana, J.; Wang, Y. A.; Peng, X. G. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. Journal of the American Chemical Society 2001, 123, 8844.
    [24] Dufour, B.; Rannou, P.; Travers, J. P.; Pron, A.; Zagorska, M.; Korc, G.; Kulszewicz-Bajer, I.; Quillard, S.; Lefrant, S. Spectroscopic and spectroelectrochemical properties of a poly(alkylthiophene)-oligoaniline hybrid polymer. Macromolecules 2002, 35, 6112.
    [25] Lu, X. F.; Yu, Y. H.; Chen, L. A.; Mao, H. P.; Zhang, W. J.; Wei, Y. Preparation and characterization of polyaniline microwires containing CdS nanoparticles. Chem. Commun. 2004, 1522.
    [26] Siemens, B.; Domke, C.; Heinrich, M.; Ebert, P.; Urban, K. Imaging individual dopant atoms on cleavage surfaces of wurtzite-structure compound semiconductors. Phys. Rev. B 1999, 59, 2995.
    [27] Franzen, P. L.; De Boni, L.; Santos, D. S.; Mendonca, C. R.; Zilio, S. C. Dynamic optical nonlinearities in aniline tetramers. J. Phys. Chem. B 2004, 108, 19180.
    [28] Veinot, J. G. C.; Ginzburg, M.; Pietro, W. J. Surface functionalization of cadmium sulfide quantum-confined nanoclusters.3. Formation and derivatives of a surface phenolic quantum dot. Chem. Mater. 1997, 9, 2117.
    [29] Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, a.; Eychmuller, a.; Weller, H. Cds Nanoclusters - Synthesis, Characterization, Size-Dependent Oscillator Strength, Temperature Shift of the Excitonic-Transition Energy, and Reversible Absorbency Shift. J. Phys. Chem. 1994, 98, 7665.
    [30] Khanna, P. K.; Lonkar, S. P.; Subbarao, V.; Jun, K. W. Polyaniline - CdS nanocomposite from organometallic cadmium precursor. Mater. Chem. Phys. 2004, 87, 49.

    Chapter 6
    [1] Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.; Bawendi, M. G. Organometallic synthesis and spectroscopic characterization of manganese-doped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 2532.
    [2] Malik, M. A.; O'Brien, P.; Norager, S.; Smith, J. Gallium arsenide nanoparticles: synthesis and characterisation. J. Mater. Chem. 2003, 13, 2591.
    [3] Yang, H.; Holloway, P. H. Enhanced photoluminescence from CdS: Mn/ZnS core/shell quantum dots. Appl. Phys. Lett. 2003, 82, 1965.
    [4] Yang, H. S.; Holloway, P. H.; Santra, S. Water-soluble silica-overcoated CdS: Mn/ZnS semiconductor quantum dots. J. Chem. Phys. 2004, 121, 7421.
    [5] Perego, M.; Ferrari, S.; Fanciulli, M.; Ben Assayag, G.; Bonafos, C.; Carrada, M.; Claverie, A. Characterization of silicon nanocrystals embedded in thin oxide layers by TOF-SIMS. Appl. Surf. Sci. 2004, 231-2, 813.
    [6] Chen, W. Y.; Chen, C. Y.; Hsu, K. Y.; Wang, C. C.; Ling, Y. C. Reaction monitoring of polyaniline film formation on carbon nanotubes with TOF-SIMS. Appl. Surf. Sci. 2004, 231-2, 845.
    [7] Sarathy, K. V.; Thomas, P. J.; Kulkarni, G. U.; Rao, C. N. R. Superlattices of metal and metal-semiconductor quantum dots obtained by layer-by-layer deposition of nanoparticle arrays. J. Phys. Chem. B 1999, 103, 399.
    [8] Erwin, S. C.; Zu, L. J.; Haftel, M. I.; Efros, A. L.; Kennedy, T. A.; Norris, D. J. Doping semiconductor nanocrystals. Nature 2005, 436, 91.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE