簡易檢索 / 詳目顯示

研究生: 洪宗良
論文名稱: 廢棄銲料金屬之微生物溶濾與回收
Microbial Leaching of Waste Solder for Recovery of Metal
指導教授: 賀陳弘
口試委員: 徐瑞坤
洪健中
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: Aspergillus nigerThiobacillus ferrooxidans錫料溶濾印刷電路板金屬回收
外文關鍵詞: Aspergillus niger, Thiobacillus ferrooxidans, Solder, Bioleaching, Printed circuit board, Metal recovery
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 消費性電子產品日益蓬勃,許多廢棄印刷電路板大量堆積造成環境汙染,其電路板上含有大量金屬材料,在全球環保回收趨勢中,近日已有相關的金屬回收方式。本論文將針對廢棄印刷電路板上的銲錫材料進行研究,採用市面上多數採用的錫料做為實驗素材,並以微生物做為工具,探討不同的錫料外型長度大小、上清液對錫料的溶濾、不同的溫度環境、不同的培養箱轉速、不同的溶濾溶液體積、不同的錫料重量與超聲波震盪對溶濾的影響,回收溶濾完上清液中的錫、鉛、銅、銀等金屬做為日後循環應用,實驗採用無危害人體的非傳統微生物溶濾錫料的方式。實驗結果以100ml Aspergillus niger上清液在溫度30(_^0)C、轉速200rpm溶濾尺寸3mm、0.5g之含銀銅錫料,經過60小時其溶濾效果達到99%。廢棄印刷電路板溶濾以兩階段處理,以溫度30(_^0)C、轉速200rpm、0.5g廢棄印刷電路基板粉末浸泡在100ml Aspergillus niger上清液中,每12、24小時以超聲波震盪30分鐘,經過144小時以回收鉛、錫金屬。溶濾後之溶液再添加NaCl、NaOH及Hydrogen sulfide以回收銀、錫、銅及鉛金屬。
    本實驗首次針對銲料溶濾使用對環境無害的Aspergillus niger進行溶濾,Sn(60%)-Cu(37%)-Ag(3%)錫料溶濾效果在36hr達到97.8%、Sn(63%)-Pb(37%)錫料溶濾效果在144hr達到99.4%。


    The increase in use of electrical and electronic equipments (EEE) results in an increase in amount of electronic waste. Solders are used as interconnecting material in electronic packaging. However, metals present in solder can pose negative impacts on both environment and the human body. Pyrometallurgical and hydrometallurgical methods are used for recycling of these waste solders. However, these methods have certain disadvantages, such as consumption of high energy and use of harmful chemicals. There is a need of environmentally benign process to recover metals from waste solders. In the present work bioleaching of lead free and lead containing solders was studied. This was achieved by employing culture supernatants of Acidithiobacillus ferrooxidans (At. ferrooxidans) and Aspergillus niger (A. niger). Two types of lead free solders were used, Sn-Cu and Sn-Cu-Ag. Along with this lead containing (Sn-Pb) solder was also used. It was found that culture supernatant of A. niger removed metals in less time as compared to culture supernatant of At. ferrooxidans. Therefore further bioleaching experiments were carried out with A. niger supernatant to investigate the dissolution behavior of metals under varying process parameters viz. time, temperature, shaking speed, volume of culture supernatant, amount of solder, etc. The results show that for Sn-Cu-Ag solder 99% dissolution was achieved in 60 h, while it required 96 (99%) and 144 (99%) h for Sn-Cu and Sn-Pb solders respectively. For bioleaching experiment 200 rpm shaking speed and 30 oC temperature were found optimum.
    In another experiment ultrasonic waves are used along with bioleaching process to recover metals from waste PCB. Also experiments were carried out to recover metals from bioleached solution by adding sodium chloride, sodium hydroxide and hydrogen sulfide gas. These results suggest that it is possible to recover metals from waste solders by applying biohydrometallurgical method.
    The current research is original using Aspergillus niger for solder bioleaching. This method is environmentally friendly. Solder leaching effect of Sn-Cu-Ag reached 97.8% after 36hr and solder leaching effect of Sn-Pb reached 99.4% after 144hr.

    內容 摘要 I 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 1 第二章 文獻回顧 6 2-1 銅、鉛、錫、銀化學回收法 6 2-2 銅、鉛、錫、銀微生物回收法 7 2-2-1 Aspergillus niger(A. niger) 8 2-2-2 Acidithiobacillus ferrooxidans 10 2-3 廢棄印刷電路板金屬及廢棄銲料回收 12 第三章 實驗設計 19 3-1 實驗構想 19 3-2 實驗架構與材料 19 3-2-1 上清液溶液 20 3-2-2 實驗機台 21 3-2-3 反應源溶液 21 3-2-4 反應錫料及廢棄印刷電路板 22 3-2-5 實驗設備與化學品 22 3-3 實驗參數 22 3-4 銀錫回收 23 第四章 實驗結果與討論 32 4-1 錫料外型長度對溶濾之影響 32 4-2 不同的上清液對不同錫料溶濾之影響 33 4-3 溫度環境對溶濾之影響 34 4-4 培養箱轉速對溶濾之影響 35 4-5 上清液溶液體積對溶濾之影響 36 4-6 錫料總量對溶濾之影響 37 4-7 PCBs 溶濾結果分析 38 4-8 ultrasonic對溶濾之影響 39 4-9 NaOH, NaCl and H2S 沉澱回收 39 第五章 結論與未來展望 58 5-1 結論 58 5-2 未來展望 59 參考文獻 60 Appendix 64   表 表1-1 岱暉綠能材料股份有限公司與昇貿2003-2005年核心產品[1] 3 表1-2 鉛用量在各種產品上的比例[3] 4 表1-3 銅、銀、鉛及錫價值及為害比較 5 表2-2所示為Acidithiobacillus ferrooxidans 對各種金屬的溶濾 11 表 2 1 Aspergillus niger對各種金屬的溶濾 14 表 2 2 Acidithiobacillus ferrooxidans對各種金屬的溶濾 16 表2-3 Aspergillus niger上清液對不同金屬最大溶濾比例及所需時間 17 表2-4 Acidithiobacillus ferrooxidans上清液對不同金屬最大溶濾比例及所需時間 18 表 3 1生物安全等級規範及病原體微生物危險性等級分類 [27] 25 表 3 2 culture medium成分表 [13] 26 表 3 3溶液A與溶液B之配方表 [27] 26 表 3 4 Wolfe’s mineral solution成分表 27 表 3 5培養基設備清單與檢測儀器 27 表 3 6 EDS─PCBs成份表 28 表4-1 ICP成份分析 43 表4-2 Hydrogen sulfide通入不同pH值溶濾液體 43 表4-3 ultrasonic 對 PCB 溶濾之影響百分比 ( ND: not determine, s:shaking, u:ultrasonic ) 44 表4-4 每公升溶濾液可回收之金屬及價值示例 44   圖 圖3-1 PCBs粉末成份分析 29 圖3-2 PCBs板析出錫料成份分析 30 圖3-3廢棄印刷電路板錫料萃取物EDS檢測 31 圖4-1 錫料外型長度對溶濾之影響 45 圖4-2 不同的上清液對不同錫料溶濾之影響 46 圖4-3 Fe2+對Acidithiobacillus ferrooxidans溶濾之影響變化 46 圖4-4 溫度對溶濾之影響 46 圖4-5培養箱轉速對溶濾之影響 47 圖4-6 上清液溶液體積對溶濾之影響 47 圖4-7 SEM─微生物蝕刻錫料過程 48 圖4-8 150ml上清液溶液體積實驗設計 (a)500ml錐形瓶加PVC 材料、(b)250ml錐形瓶加PVC材料、(c) 500ml錐形瓶(d)250ml錐形瓶 49 圖4-9 上清液溶液體積對溶濾之影響─150ml 49 圖4-10 上清液溶液體積對溶濾之影響 50 圖4-11 錫料總量對溶濾之影響 50 圖4-12 錫料總量對溶濾之影響 51 圖4-14 Aspergillus niger對PCBs粉末溶濾之影響 52 圖4-15 Aspergillus niger對PCBs粉末及PCBs萃取物溶濾之回收比例,(a)PCBs粉末、(b)PCBs萃取物 53 圖4-16 AaCl、SnO2、PbS沉澱物XRD分析圖(a) AgCl、(b) SnO2、(c) PbS 54 圖4-17 Hydrogen sulfide沉澱物及溶濾過濾後溶液ICP分析圖 57 (a) Ag2S、(b) CuS、(c) SnS、(d) PbS、(e)Metal(Sn-Cu-Ag) recovery、(f)Metal (Sn-Pb) recovery 57 附錄 A-1 錫料外型長度對溶濾之影響─weight 64 A-2 錫料外型長度對溶濾之影響─R.W. 64 A-3 錫料外型長度對溶濾之影響─% 65 A-4 不同的上清液對不同錫料溶濾之影響─weight (T.E.: titration experiment) 65 A-5 不同的上清液對不同錫料溶濾之影響─R.W. 66 A-6 不同的上清液對不同錫料溶濾之影響─% 66 A-7 溫度環境對溶濾之影響─weight 67 A-8 溫度環境對溶濾之影響─R.W. 67 A-9 溫度環境對溶濾之影響─% 68 A-10 培養箱轉速對溶濾之影響─weight 68 A-11 培養箱轉速對溶濾之影響─R.W. 69 A-12 培養箱轉速對溶濾之影響─% 69 A-13 上清液溶液體積對溶濾之影響─weight 70 A-14 上清液溶液體積對溶濾之影響─R.W. 70 A-15 上清液溶液體積對溶濾之影響─% 71 A-16 錫料總量對溶濾之影響─weight 71 A-17 錫料總量對溶濾之影響─R.W. 72 A-18 錫料總量對溶濾之影響─% 72 A-19 Different A. niger and Acidithiobacillus ferrooxidans bioleaching with PCB powder and solder take out from PCB (t.o.: take out, ND: not determine ) 73 A-20 ultrasonic with PCB powder ( ND: not determine, s:shaking, u:ultrasonic ) 74

    [1] Hsu, C. Y. (2006). Lead-Free Solder Business Strategy-A case study for" A" company.
    [2] http://php2.twinner.com.tw/files/tyu/GREEN47.pdf
    [3] http://www.shingtech.com.tw/Cht/document/無鉛焊料.pdf
    [4] Mori, M., Miura, K., Sasaki, T., & Ohtsuka, T. (2002). Corrosion of tin alloys in sulfuric and nitric acids. Corrosion Science, 44(4), 887-898.
    [5] Kumari, A., Jha, M. K., Kumar, V., Jeong, J., & Lee, J. C. (2010). Recovery of lead from the solder of waste printed circuit boards. In Proceedings of the XI International Seminar on Mineral Processing Technology (MPT-2010) (Vol. 2, No. Section 11, pp. 891-897). Allied Publishers.
    [6] Cheng, C. Q., Yang, F., Zhao, J., Wang, L. H., & Li, X. G. (2011). Leaching of heavy metal elements in solder alloys. Corrosion Science, 53(5), 1738-1747.
    [7] Yoo, K., Lee, J. C., Lee, K. S., Kim, B. S., Kim, M. S., Kim, S. K., & Pandey, B. D. (2012). Recovery of Sn, Ag and Cu from Waste Pb-Free Solder Using Nitric Acid Leaching. Materials Transactions, 53(12), 2175-2180.
    [8] Brandl, H., Bosshard, R., & Wegmann, M. (2001). Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi.Hydrometallurgy, 59(2), 319-326.
    [9] Mulligan, C. N., Galvez-Cloutier, R., & Renaud, N. (1999). Biological leaching of copper mine residues by Aspergillus niger. Process Metallurgy, 9, 453-461.
    [10] Mulligan, C. N., Kamali, M., & Gibbs, B. F. (2004). Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110(1), 77-84.
    [11] Aung, K. M. M., & Ting, Y. P. (2005). Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. Journal of biotechnology,116(2), 159-170.
    [12] Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R. N., & Sukla, L. B. (2007). Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains.Hydrometallurgy, 85(1), 1-8.
    [13] Ivănuş, R. C., & Băbăiţă, I. (2009). Aspecte economice ale biosolubilizării cuprului din deşeuri de echipamente electronice. Studia Universitatis" Vasile Goldiş" Arad-Seria Ştiinţe Economice, (1-2), 126-141.
    [14] Mehta, K. D., Das, C., & Pandey, B. D. (2010). Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus niger .Hydrometallurgy, 105(1), 89-95.
    [15] Anjum, F., Bhatti, H. N., & Ghauri, M. A. (2010). Enhanced bioleaching of metals from black shale using ultrasonics. Hydrometallurgy, 100(3), 122-128.
    [16] Amiri, F., Yaghmaei, S., Mousavi, S. M., & Sheibani, S. (2011). Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger. Hydrometallurgy, 109(1), 65-71.
    [17]Ballester, A., González, F., Blázquez, M. L., Gómez, C., & Mier, J. L. (1992). The use of catalytic ions in bioleaching. Hydrometallurgy, 29(1), 145-160.
    [18] Tyagi, R. D., Blais, J. F., & Auclair, J. C. (1993). Bacterial leaching of metals from sewage sludge by indigenous iron-oxidizing bacteria. Environmental Pollution, 82(1), 9-12.
    [19] Sukla, L. B., Panchanadikar, V. V., & Kar, R. N. (1993). Microbial leaching of lateritic nickel ore. World Journal of Microbiology and Biotechnology, 9(2), 255-257.
    [20] Choi, M. S., Cho, K. S., Kim, D. S., & Kim, D. J. (2004). Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. Journal of Environmental Science and Health, Part A, 39(11-12), 2973-2982.
    [21] Liao, M. X., & Deng, T. L. (2004). Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach. Minerals engineering,17(1), 17-22.
    [22]Ilyas, S., Anwar, M. A., Niazi, S. B., & Afzal Ghauri, M. (2007). Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria.Hydrometallurgy, 88(1), 180-188.
    [23] Ilyas, S., Ruan, C., Bhatti, H. N., Ghauri, M. A., & Anwar, M. A. (2010). Column bioleaching of metals from electronic scrap. Hydrometallurgy, 101(3), 135-140.
    [24] Xiang, Y., Wu, P., Zhu, N., Zhang, T., Liu, W., Wu, J., & Li, P. (2010). Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of hazardous materials, 184(1), 812-818.
    [25] Wang, J., Bai, J., Xu, J., & Liang, B. (2009). Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of hazardous materials, 172(2), 1100-1105.
    [26] Liang, G., Mo, Y., & Zhou, Q. (2010). Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles.Enzyme and Microbial Technology, 47(7), 322-326.
    [27]Lin, T.(2011). Effects of Substrates and Wavelength on Laser-Assisted Copper Deposition through Thiobacillus Ferrooxidans Metabolite. Master Thesis, Department of Power Mechanical Engeering, Tsing Hua University, Hsinchu.
    [28]Alvarez, M. T., Crespo, C., & Mattiasson, B. (2007). Precipitation of Zn (II), Cu (II) and Pb (II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids.
    Chemosphere, 66(9), 1677-1683.
    [29] http://stock-ai.com/index.php
    [30] http://www.kitco.cn/hk/London-Price/London-Price.htm
    [31]http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=1bb951 8e-0abb-426d-8d44-3f8994f167a7

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE