研究生: |
李慶忠 LEE, CHING-CHUNG |
---|---|
論文名稱: |
三年級科任數學教師建構學生社會數學規範之行動研究 An Action Research of a Third-grade Subject Teacher of the Construction of Sociomathematical Norms |
指導教授: | 蔡文煥 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 166 |
中文關鍵詞: | 社會數學規範 、社會規範 、科任教師 、美術班 、行動研究 、小學 |
外文關鍵詞: | sociomathematical norms, social norms, subject teacher, art-talent class, action research, elementary school |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以課室討論文化為基礎的課室教學中,以一位科任數學教師的角色,建構學生社會數學規範的行動歷程,和行動歷程中所遭遇的困難與解決方法,同時探究教師引導學生建構社會數學規範採行的策略以及自我反思的歷程。
透過「教師適時介入,引導學生進行數學意義的討論」、「善用課室突發事件,讓學生經驗討論的優點」、「形成課室成員充分表達、尊重、聆聽的共識」以及「教師的示範」等策略,發展學生形成的社會規範有:(1)「小組討論」要「說清楚、講明白」自己的解法、「聆聽」他人的說明並提問問題(2)「全班討論」發表時必須「說清楚、講明白」(3)「學生個別解題」書寫上要讓同學看「清楚」。另外,也同時藉由「使用具有數學意義的語言、符號做為溝通工具」、「關鍵提問引導學生反思說清楚的條件、目的及優點」、「藉由示範鷹架學生發表、提問、討論等技巧」及「透過示範建構學生解法分類的判準」等策略,形成的社會數學規範有:(1)將解題紀錄說清楚、講明白(2)比較並分類不同的解題紀錄(3)察覺課室活動中的數學意義(4)利用他人的解題重組自己的數學概念(5)利用已知的數學概念推論未知。
此外,研究過程中意外發現學生早一步非正規習得的數學「技能」會影響其在課室討論中的表現,教師須強烈引導學生以「邏輯推理」的合理性看待所有數學問題,而非聚焦於數字的操弄。而社會數學規範的穩固與持續,有賴教師於課室活動中反覆要求、檢驗學生的說明與討論。
最後分析也發現,社會規範形成的歷程具有「共通性」包含:(1)瞭解學生先備經驗、起點行為(2)以文獻探討協助採行策略的形成(3)以教學現場發生的事件為討論議題(4)教師「適時」介入(5)進行教學省思。研究中將詳述策略的執行對社會數學規範形成與學生學習表現的影響,且發現影響是正面的。
The study discusses the process of researcher’s action research focus on constructing sociomathematical norms by a subject mathematical teacher. Including the difficulties suffered crossing the process and the solving strategies, which guided students constructing sociomathematical norms by the teacher. Otherwise the studies also focus on the reflecting process through the mathematical discourse.
From this study, the social norms were constructed included “explain clearly one’s own solution, listen and ask questions during the discussion in the small group”, “explain clearly in the representation of the whole-class discourse” and “the writing must be understood and clear to the members of the class”, through the strategies of “to interfere and lead students’ discussion with mathematical meanings”, “to show as a model of mathematical representation, question and classification” and “to form respect and listening as a public knowledge in the class discourse”. Similar to the sociomathematical norms, constructed by the students who passed the “ART-talent examination” and become one of the “ART-talent classes” members in our school, included “explain one’s solution clearly through the base of mathematical knowledge”, “compare and classify the solutions”, “to be conscious of the mathematical meanings in the activities held in the class”, “to reorganize one’s concepts through others’ solutions” and “to infer the unknown concepts by using the concepts which have been learned”. The strategies include “using mathematical language and signals as the tool in the class discourse”, “modeling the skill of explanation, asking question, discussion and classification”, and “let students experience the advantages of clear explanations”.
Besides, the study also found that the students have got the “skill” outside the classroom can influence the practice in the mathematical discourse deeply. So teacher must be aware of the mathematical reasoning rather than manipulation of numbers.
Most of all, the analytical findings shows the common procedure of constructing sociomathematical norms such as, understanding the background of students, forming acceptable and reliable strategies by literature studies, to be a reflexive and reflective teacher and taking the daily events happened in the class to be the issues of discussion. In the study, there will be more strategies to be declared detail. Also it will show the relationships between the sociomathematical norms and the performance of mathematical learning, and we will find out the influence is a huge benefit to students’ mathematical learning.
一、中文文獻
王春展(1996)。情境學習理論及其在國小教育上的應用。國教學報,8,53-71。
王金國 (2004)。多功能的小組討論教學。靜宜大學地方教育輔導通訊,第八期。
吳幸宜譯(Margaret E. G.)(1994)。學習理論與教學應用。台北:心理。
吳美枝、何禮恩譯(McNiff, J., Lomax, P., & Whitehead J.原著)(2001)。行動研究:生活實踐家的研究錦囊。嘉義市:濤石文化。
谷瑞勉譯(Berk, L. E. & Winsler, A.著)(1999)。鷹架兒童的學習。台北:心理。
李慕華譯(Henderson J. G.等原著)(2000)。反思教學:成為一位探究的教育者。台北:心理。
林文生、鄔瑞香(1999)。數學教育的藝術與實務:另類教與學。台北:心理。
周淑惠譯(Kamii, C., Clark, F. B.,& Dominick, A.著)(1997)。以皮亞傑建構主義為根基的幼兒教育。兒童發展理論與幼教實務學術研討會手冊,國立新竹師範學院幼教系。
柯華崴、幸曼玲(1996)。討論過程中的互動-年齡與推理能力的影響。皮亞傑與維高斯基的對話會議手冊。台北市立師範學院兒童發展中心。
柯登淵(1996)。國小四年級新數學實驗課程師生數學解題討論與共識發展之觀察研究。國立政治大學教育研究所碩士班論文。未出版。
張春興(1996)。教育心理學:三化取向的理論與實踐。台北:東華。
張靜嚳(1995)。何謂建構主義。中部地區科學教育簡訊,建構與教學(3)。國立彰化師範大學科學教育研究所。
陳姿靜(2004)。一位五年級教師實踐分數教學之行動研究。國立新竹教育大學應用數學系碩士班論文。未出版。
陳淑娟、劉祥通(2001)。國小教師進行數學討論活動困難之探討。教育研究資訊,9(2),125-146。
陳淑娟、劉祥通(2002)。國小班級數學討論活動可行方案之探討。科學教育學刊,10(1),87-107。
陳慧娟(1998)。情境學習理論的理想與實現。教育資料與研究,25,47-55。
黃雅惠(2007)。數學推理規範對四年級學生乘除法概念學習關係之研究。國立新竹教育大學應用數學系碩士班碩士論文。未出版。
教育部(1975)。國民小學課程標準。台北市:中正。
教育部(1993)。國民小學課程標準。台北市:教育部。
教育部(2003)。國民中小學九年一貫數學學習領域課程綱要。台北市:教育部。
教育部(2008)。國民中小學九年一貫數學學習領域課程綱要。台北市:教育部。
湯梅英譯(Eisner, E. W., & Peshkin A.著)(2006)。教育領域的質性探究:持續不斷的爭議。台北市:文景書局。
廖怡甄(2009)。一位一年級教師發展數學課室討論之行動研究。國立新竹教育大學人力資源教育處教師在職進修應用數學系數學教育碩士班論文。未出版。
潘世尊(2005)。教育行動研究:理論、實踐與反省。台北市:心理。
蔡清田(2000)。教育行動研究。台北市:五南。
蔡清田(2001)。「教師即研究者」的課程行動研究。中華民國課程與教學學會(主編)。行動研究與課程教學革新,101-120。台北:揚智文化。
蔡文煥、林碧珍(2004)。九年一貫數學能力指標之詮釋:國小連結部份。國科會科教處九十二年度九年一貫數學領域能力指標詮釋計畫成果發表會,87-199,行政院國家科學委員會科學教育發展處。
蔡文煥、林碧珍(2005)。協同國小教師探討國小學童能力發展歷程。行政院國家科學委員會九十四年度專題研究計畫。NSC94-2521-S-134-003。
蔡文煥(2005)。發展數學課室之討論文化藉以提昇學童之智力自主性。行政院國家科學委員會專題研究成果報告。NSC92-2521-S-134-002。
歐惠如(2006)。數學推理規範發展下對三年級學生數學推理歷程之探究。國立新竹教育大學應用數學系碩士班碩士論文。未出版。
鍾靜(1997)。低年級數學課室文化的轉變研究。台北師院學報,501-532。
戴絹穎(2006)。一位二年級教師促進社會數學規範之行動研究。國立新竹教育大學人力資源教育處教師在職進修應用數學系數學教育碩士班論文。
二、英文文獻
Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. In J. Kilpatrick, W. G. Martin, and D. Schifter (Eds.), A Research Companion to Principals and Standards for School Mathematics. (pp. 27-44). Reston, VA: National Council of Teachers of Mathematics.
Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics education. In T. Cooney & D. Grouws(Eds.), Effective mathematics teaching. (pp. 27-46). Reston, VA: National Council of Teachers of Mathematics/Erlbaum.
Bowers, J., Cobb, P. & McClain, K. (1999). The Evolution of Mathematical Practices: A Case Study. Cognition and Instruction, 17(1), 25-64.
Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom mathematics traditions: An interaction analysis. American Educational Research Journal, 29, 573-604.
Cobb, P., & Yackel, E. (1996). Constructivist, emergent, and socialcultural perspectives in the context of developmental research. Educational Psychologist, 31(3/4), 175-190.
Cobb, P., McClain, K., & Whitenack, J. (1997). Reflection discourse and collective reflection. Journal for Research in Mathematics Education, 28(3), 258-277.
Cobb, P. (1999). Individual and Collective Mathematical Development: The Case of Statistical Data Analysis. Mathematical Thinking and Learning, 1(1), 5-43.
Fraivilig, J. L., Murphy, L. A., & Fuson, K. C., (1999). Advancing children’s mathematical thinking in Everyday Mathematics classrooms. Journal for Research in Mathematics Education, 30, 148-170.
McClain, K. (2000). An Analysis of The Teacher’s Role in Supporting the Emergence of Symbolizations in one First-Grade Classroom. Journal of Mathematical Behavior, 19, 189-207
McClain, K., & Cobb, P. (2001). An analysis of development of socialmathematical norms in one first-grade classroom. Journal for Research in Mathematics Education, 32(3), 236-266.
National Concil of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Raston, VA: National Council of Teachers of Mathematics.
National Concil of Teachers of Mathematics. (1991). Professional standards for teaching mathematics. Raston, VA: National Council of Teachers of Mathematics.
National Council of Teachers of Mathematics. (2000). Principles and Standards for School Mathematics. Reston, VA: National Council of Teachers of Mathematics.
Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114-145.
Simon, M. A. & Blume, G. W. (1996). Justification in the Mathematics Classroom: A Study of Prospective Elementary Teachers. Journal of Mathematical Behavior, 15, 3-31.
Tsai W. H. (2004). Supporting Teachers On Developing Teaching Norms Based On Children’s Learning Mathematics. The Proceeding of the 28th International Group for the Psychology of Mathematics Education. (pp. 4-329~4-336) Bergen, Norway.
Tsai, W. H. (2006). Connecting Children’s In-School With Out-school Mathematics By Using Mathematical Writings. The Proceeding of the 30th International Group for the Psychology of Mathematics Education.(pp. 4-~4-).
Wiersma, W. (1995). Research Methods in Education: An Introduction. 6th ed.
Wood, T.(1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171-191.
Yackel, E., Cobb, P. & Wood, T. (1991). Small-Group Interactions As a Source of Learning Opportunities in Second-Grade Mathematics. Journal for Research in Mathematics Education, 22(5), 390-408.
Yackel, E., & Cobb, P. (1996). Socialmathematical norms, argumentation, and autonomy in mathematics. Journal for Research in Mathematics Education, 27, 458-477.