簡易檢索 / 詳目顯示

研究生: 湯可庠
TANG, KE-XIANG
論文名稱: 研究稀土元素釓摻雜二硫化鉬之磁性催化劑於磁場下對於析氫反應之影響
Effect of rare earth element gadolinium doped molybdenum disulfide magnetic catalyst on hydrogen evolution reaction under magnetic field
指導教授: 李志浩
Lee, Chih-Hao
口試委員: 葉宗洸
Yeh, Tsung-Kuang
蒲盈志
Pu, Ying-Chih
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 61
中文關鍵詞: 二硫化鉬稀土元素二維材料缺陷析氫反應催化劑
外文關鍵詞: rare-earth doping, MoS2, 2D materials, defects, HER catalyst
相關次數: 點閱:58下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文研究中,使用了磁控濺鍍製造了摻雜釓的二硫化鉬並利用來作為析氫反應(Hydrogen Evolution Reaction)的催化劑且通過電化學的量測其非磁化、磁化(殘磁),放置磁場下的過電位,以研究磁性催化劑在不同情況下對於HER的影響。對於材料性質,在本研究中使用了XRD,XPS,SEM,Raman spectroscopy analysis,去研究材料在不同基板、不同摻雜濃度、不同成長時間上的結晶度、成分組成、表面形貌,從電化學LSV的數據可以發現到,摻雜釓的二硫化鉬在殘磁的狀態過電位為210 mV 遠小於沒有摻雜的二硫化鉬(353 mV ),而塔佛斜率也有所下降。而在飽和磁化量最高的3.5 nm樣品中我們透過變化磁場下量測LSV發現到,其過電位會隨著不同的磁場方向而改變,這是以往都沒有人發現到的現象,透過SEM 我們可以觀察到利用磁控濺鍍成長二硫化鉬於金基板上比起其他導電基板擁有更多的花狀結構,這也為二硫化鉬作為催化劑製造更多的工作面積,結合XRD、XPS、Raman spectroscopy 可以觀察到不同濃度的摻雜對於二硫化鉬結晶度、元素價數的影響並藉此去研究摻雜所導致的晶體缺陷對於催化反應的影響,最後透過析吸收光譜(XAS、FTIR)去研究摻雜後所引起電子軌域的變化以及二硫化鉬不同的鍵結方向。


    In this study, gadolinium doped molybdenum disulfide was fabricated by magnetron sputtering and used as a catalyst for the hydrogen evolution reaction. The non-magnetization, magnetization (remanent magnetism), and overpotential under a magnetic field were measured electrochemically to investigate the effect of magnetic catalysts on HER under different conditions. For the material properties, XRD, XPS, SEM, and Raman spectroscopy analysis were used in this study to investigate the crystallinity, composition, and surface morphology of the material on different substrates, doping concentrations, and growth times. From the electrochemical LSV data, it can be found that the overpotential of gadolinium doped molybdenum disulfide in the remanent magnetic state is much smaller than that of undoped molybdenum disulfide (353 mV), and the Tafel slope also decreases. In the 3.5 nm sample with the highest absorption magnetization, we measured LSV under transmission changing magnetic fields and found that its overpotential changes with different magnetic field directions. This is a phenomenon that no one has discovered before. Through SEM, we can observe that using magnetron sputtering to grow molybdenum disulfide on gold substrates has more flower like structures than other conductive substrates This also creates more working area for molybdenum disulfide as a catalyst. By combining XRD, XPS, and Raman spectroscopy, the effects of different concentrations of doping on the crystallinity and element valence of molybdenum disulfide can be observed, and the influence of crystal defects caused by doping on catalytic reactions can be studied. Finally, through analysis and absorption spectroscopy (XAS, FTIR) Study the changes in electronic orbital domains caused by doping and the changes in bonding.

    碩士論文 i 研究稀土元素釓摻雜二硫化鉬之磁性催化劑於磁場下對於析氫反應之影響 i 摘要 ii Abstract iii 致謝 v 目錄 vii 圖目錄 x 表目錄 xii 1.緒論 1 1.1前言 1 1.2文獻回顧 1 1.2.1二硫化鉬 1 1.2.2HER (Hydrogen Evolution Reaction) 3 1.2.3磁性元素摻雜提升催化反應 5 1.2.4研究動機 7 2.儀器原理與實驗方法 8 2.1 磁控濺鍍 8 2.1.1 直流濺鍍 9 2.1.2 射頻濺鍍 10 2.2 X光繞射儀 10 2.2.1掠角X光粉末繞射法 11 2.3 掃描式電子顯微鏡 13 2.3.1二次電子影像 13 2.3.2背向散射電子影像 14 2.4 X光吸收光譜 14 2.5 拉曼光譜 15 2.6 X射線電子能譜學 16 2.6.1 X射線光電子能譜原理 16 2.7 電化學量測 17 2.7.1 線性伏安法 17 2.7.2 循環伏安法 18 2.7.3電化學所使用的參數 18 2.8 實驗步驟 19 2.8.1 基板清洗方式 19 2.8.2樣品製備流程 20 2.8.3樣品量測方式 21 3.結果與討論 24 3.1 MoS2薄膜成長以及於不同導電基板之比較 24 3.1.1 掃描式電子顯微鏡之結果 24 3.1.2 拉曼光譜之結果 26 3.2 不同摻雜濃度之稀土元素MoS2 之材料性質比較 28 3.2.1 X光吸收光譜之結果 28 3.2.2 X光電子能譜之結果 32 3.2.3 掠角X光繞射之結果 36 3.3有無殘磁之稀土元素參雜MoS2電化學之比較 38 3.3.1 線性伏安法之結果比較 38 3.4 於磁場下稀土元素摻雜MoS2 電化學分析 41 3.4.1 線性伏安法 41 3.4.2 循環伏安法 43 4、結論 47 5、未來展望 48 短期: 48 長期: 49 參考文獻 49 附錄 54

    1.Musharavati F et al. A review on hydrogen production and utilization: Challenges and opportunities Int J Hydrogen Energy. 47, (2022), 25945-63.
    2.Ghiyasiyan-Arani et al. Application of ultrasound-aided method for the synthesis of NdVO4 nano-photocatalyst and investigation of eliminate dye in contaminant water Ultrason Sonochem. 39, (2017), 494-503.
    3. J. Tang et al. Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution international journal of hydrogen energy. 47, (2022), 39771-39795.
    4.Chen L et al. Insight into the excellent catalytic activity of (CoMo)S2/graphene for hydrogen evolution reaction Appl Catal B Environ. 258, (2019), 118012.
    5.J. Zhou et al. Chemical Physics Letters. 787, (2022), 139231.
    6.K.S. Novoselov et al. A roadmap for graphene Nature 490 (2012) 192-200.
    7. D. Jariwala et al. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides ACS Nano 8(2) (2014) 1102-1120
    8. Q.H. Wang et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nature Nanotechnology 7(11) (2012) 699-712.
    9. K. S. Novoselov et al. Two-dimensional atomic crystals Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 10451–10453.
    10. A.K. Geim et al. Nobel Lecture: Random walk to graphene Reviews of Modern Physics 83 (2011) 851-862.
    11. W. Zhou et al. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide Nano Letters 13 (2013) 2615−2622.
    12. H.-Q. Zhao et al. Bandgap modulation of MoS2 monolayer by thermal annealing and quick cooling Nanoscale 8 (2016) 18995-19003.
    13. Hoang Huy, V. P. et al. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries Nanomaterials 2021, 11 (6), 1517.
    14. Jianhua Yan et al. Direct Magnetic Reinforcement of Electrocatalytic ORR/OER with Electromagnetic Induction of Magnetic Catalysts Mater. 2021, 33, 2007525
    15. Ren, X et al. Spin-polarized oxygen evolution reaction under magnetic field
    Nat. Commun. 2021, 12, No. 2608.
    16. Tao Sun et al. Ferromagnetic single-atom spin catalyst for boosting water splitting Nature Nanotechnology | Volume 18 | July 2023 | 763–771
    17. Moxfyre. Energy-level diagram showing the states involved in Raman spectra. (accessed.
    18. Dinh, et al. Light-controlled room temperature ferromagnetism in vanadium-doped tungsten diselenide semiconducting monolayers Loc Duong Appl. Phys. Lett. 115, (2019), 242406.
    19. World Energy Outlook 2015, (International Energy Agency, 2015).
    20. Hengli et al. Single-Atom-Layer Catalysis in a MoS2 Monolayer Activated by LongRange Ferromagnetism for the Hydrogen Evolution Reaction: Beyond Single-Atom Catalysis Angew. Chem. Int. Ed. 2021
    21. Moxfyre. Energy-level diagram showing the states involved in Raman spectra
    22. Levie et al.Journal of Electroanalytical Chemistry. October 1999, 476
    23.Y. Jiao et al.Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions Soc. Rev. 44, 2060-2086 (2015).
    24. J. D. Benck et al. Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 4, 3957-3971 (2014).
    25.Chen et.al. Perspective on Intermetallics Towards Efficient Electrocatalytic Water-Splitting. Sci. (2021)
    26. Jing Zhou et al. Mechanism of sulfur vacancies and doping in 1 T’-MoS2 toward the evolution of hydrogen Chemical Physics Letters 787 (2022) 139231
    27. Jun Tang et al. Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution international journal of hydrogen energy 47 (2022)
    28. Jingdong Li et al. High proportion of 1 T phase MoS2 prepared by a simple solvothermal method for high-efficiency electrocatalytic hydrogen evolution Chemical Engineering Journal 422 (2021) 130100
    29. Jing Zhou et al. Mechanism of sulfur vacancies and doping in 1 T’-MoS2 toward the evolution of hydrogen Chemical Physics Letters 787 (2022)
    30. S. Geng et al.Engineering sulfur vacancies in basal plane of MoS2 for enhanced hydrogen evolution reactio Journal of Catalysis(2020)
    31 Charlie Tsai et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution NATURE COMMUNICATIONS(2017)
    32. Gonglan Ye . et al.Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction Nano Lett. 2016,
    33. Z. Li, C. Li, J. Chen et al .Confined synthesis of MoS2 with rich co-doped edges for enhanced hydrogen evolution performance .Journal of Energy Chemistry 70 (2022)
    34. Jagan Radhakrishnan et al. Facile synthesis of S-vacancy induced electrochemical HER activity in multilayered Sn doped MoS2 Journal of Alloys and Compounds 917 (2022)
    35. Yano, J. et al. X-ray absorption spectroscopy. Photosyn. Res. 2009, 102 (2), 241-254.
    36. Garino, C. et al. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014, 277-278, 130-186..
    37. Garino, C., et al., Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coordination Chemistry Reviews, 2014. 277-278: p. 130-186.
    38. Buschow et al. New permanent magnet materials. Materials Science Reports, 1986. 1(1): p. 1-63.
    39. Zhang, et al. Density functional theory prediction on magnetism in Gd-doped monolayer MoS2. Solid State Communications, 2015. 212: p. 35-40.
    40. Maji et al. A density functional theory study of electronic and magnetic properties of rare earth doped monolayered molybdenum disulphide. Journal of Applied Physics, 2016. 120(14)
    41. Patterson, A. L. et al. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56 (10), 978-982.
    42. Donarelli, M., et al., Tunable sulfur desorption in exfoliated MoS2 by means of thermal annealing in ultra-high vacuum. Chemical Physics Letters, 2013. 588: p. 198-202.

    QR CODE