研究生: |
薩加 |
---|---|
論文名稱: |
以過渡金屬進行新式烯炔轉換用以合成高度官能基之碳環與雜環化合物 The Transition Metal Catalyzed New Organic Transformation of Enynes for Synthesis of Highly Functionalized Carbocyclic & Heterocyclic Systems |
指導教授: | 劉瑞雄 |
口試委員: |
劉瑞雄
蔡易州 鄭建鴻 孫仲銘 侯敦仁 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 805 |
中文關鍵詞: | 金催化 、鋅催化 、氧化還化 、炔類 、烯類 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文分為四個章節探討以金催化劑與鋅催化劑進行新穎的有機合成反應,其中包含了氧化環化反應、高立體選擇性[2+2+3]環化反應、1,4-雙羰基化合物合成與1,4-復分解反應等。
第一部分利用金催化劑催化1,5烯炔化合物並與氧化劑(8-Methylquinoline N-Oxide)進行氧化環化反應而得茚酮類化合物。天然物中常會見到茚酮化合物的骨架存在,而此骨架的合成是經由氧化炔類而得的α-羰基中間體再度進行碳環化而成。
第二章結講述的為金催化劑催化1,6烯炔類化合物與硝酮進行[2+2+3]環化反應並且得到高度的鏡像與非鏡像選擇性產物。此反應對於1,6烯炔與硝酮化合物的官能機有極大的容忍度,並且此氮氧結構對於接續的應用與生物上的合成皆有極大的用處。
第三章敘述一種新穎的方式在3-烯1-炔類化合物進行1,4-雙羰基化合物的合成。利用一鍋方式可將低活性的3-芳香環-3-烯-1炔化合物反應成1,4-雙羰基化合物,並且有高度的Z- E-選擇性。而其反應機構是經由類呋喃化合物中間體,其氫化間參與了烯類氟化反應而得。本部分是第一個成功將3-烯1-炔類化合物合成至1,4-雙羰基化合物的反應。
第四章則是利用催化劑將3-烯1-炔氮基化合物與芳香亞硝基進行復分解反應,此反應經由銀催化劑與鋅催化劑催化後可得到非預期的3-聯胺基炔類化合物與苯醛,並且進一步的將此兩化合物進行加成而得1,4-氧氮基化合物。
This dissertation describes the development of new synthetic organic transformation by using gold and zinc salts. Transition metal-catalyzed organic transformations such as Oxidative Cyclization, Di-stereo and Enatioselective [2+2+3] cycloaddition, 1,4-Dioxo Functionalizations, 1,4-Metathesis Reactions of appropriately functionalized organic molecules are described in this dissertation. For sake of convenience and better understanding, the thesis is divided into four chapters.
The first chapter deals with the Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes Using External Oxidants (8-Methylquinoline N-Oxide) to deliver indanone frameworks. Such indanone core is one of the most commonly encountering skeletons in nature. The core structure of the resulting products are construct through a formal reactions proceed through prior oxidations of alkyne to form α-carbonyl intermediates, followed by intramolecular carbocyclizations.
The second chapter deals with the Gold-catalyzed diastereo- and enantioselective [2+2+3]-cycloaddition reactions of 1,6-enynes with nitrones. The utility of such reactions is manifested by a wide substrate scopes of 1,6-enynes and nitrones. This Gold-catalyzed diastereo- and enantioselective [2+2+3]-cycloaddition reactions of 1,6-enynes with nitrones deliver 1,2-Oxazepane core which has wide aplication in structural and biological importance.
The third chapter describes new 1,4-oxo functionalizations of 3-en-1-ynes based on a hydrative oxidation approach. The one-pot dioxo reactions were applicable to various 3-en-1-ynes including unactivated 3-aryl-3-en-1-ynes, giving Z- or E-configured 2-en-1,4-dicarbonyl compounds selectively. In this chapter, mechanistic analysis supported an initial formation of furan intermediates, generated from carbonyl-assisted alkenyl fluorinations of hydration intermediates. This work reports the first success for 1,4-oxo functionations of readily available 3-en-1-ynes to offer highly functionalized alkenes.
The fourth chapter presents Catalyst-dependent metathesis reactions between 3-en-1-ynamides and nitrosoarenes are described. Particularly notable are the unprecedented 1,4-metathesis reactions catalyzed by Ag(I) or Zn(II) to give 3-imidoylalkynes and benzaldehyde. With 3-en-1-ynamides bearing a cycloalkenyl group, 1,4-oxoimination products were produced efficiently without molecular fragmentation. We have developed metathesis/alkynation cascades for terminal 3-imidoylalkynes and benzaldehyde species generated in situ, to manifest 1,4-hydroxyimination reactions of 3-en-1-ynes.
1.11 References:
[1] (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (b) Volz, F.; Krause, N.;
Org. Biomol. Chem. 2007, 5, 1519. (c) Sawama, Y.; Sawama Y.; Krause, N. Org. Biomol. Chem.
2008, 6, 3573. (d) Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H.-T.; Gockel, B.;
Hoffmann-Röder, A.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (e) Zhou, Q.; Chen,
X.; Ma, D. Angew. Chem. Int. Ed. 2010, 49, 3517. (f) Molawi, K.; Delpont, N.; Echavarren, A.
M. Angew. Chem. Int. Ed. 2010, 49, 3517. (f) Fang, C.; Pang, Y.; Forsyth, C. J. Org. Lett. 2010,
12, 4528.
[2] Selected reviews: (a) Fürstner, A.; Davies, P. W. Angew. Chem. 2007, 119, 3478; Angew.
Chem. Int. Ed. 2007, 46, 3410. (b) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. 2006, 118,
8064; Angew. Chem. Int. Ed. 2006. 45, 7896. (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
Rev. 2008, 108, 3351. (d) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (e) Abu
Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
[3] (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3351. (b) Zhang, L.; Sun,
J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (c) Gorin, D. J.; Toste, F. D. Nature.
2007, 446, 395. (d) Trost, B. M.; Krische, M. J. Synlett. 1998, 1. (e) Aubert, C.; Buisine, O.;
Malacria, M. Chem. Rev. 2002, 102, 813. (f) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1,
47 19/02/2014
Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
215. (g) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (h) Echavarren, A. M.;
Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (i) Bruneau, C. Angew. Chem. 2005, 117, 2380;
Angew. Chem. Int. Ed. 2005, 44, 2328. (j) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. 2006, 118, 206;
Angew. Chem. Int. Ed. 2006, 45, 200. (k) Nieto-Oberhuber, C.; Lopez, S.; Jiménez-Núñez, E.;
Echavarren, A. M. Chem. Eur. J. 2006, 12, 5916.
[4] Only two reports were known for the oxidative cyclizations of 1,6-enynes via oxidative
removal of gold-carbenoid intermediates. The work of Toste[22a] includes only four 1,6-enyne
substrates whereas the second study[22b] involves formation of naphthyl gold-carbenoid that is
kinetically stable.
[5] (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74,
93; Angew. Chem. Int. Ed. 1962, 1, 80. (b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991,
64, 2013. (c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed.
2000, 39, 2285.
[6] (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. (b) Fukuda, Y.;
Utimoto, K. Synthesis, 1991, 975. (c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996,
61, 3289. (d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343,
443.
[7] (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Johansson, M. J.; Gorin,
D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (c Gorin,) D. J.; Dube, P.;
Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480. (d) López, S.; Herrero-Gómez, E.; Pérez-
Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029. (e)
Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (f) For cyclization of allenynes with
48 19/02/2014
Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.;
Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 7596
[8] (a) Hutchings, G. J. Gold Bull. 1996, 29, 123. (b) Hutchings, G. J. Catal. Today, 2002, 72,
11.
[9] (a) Carey, F. A.; Sundberg, R. J. Advanced organic chemistry: Part-B, 5th edition, pp 903-
947. (b) Morrison, R. T.; Boyd, R. N. Organic chemistry: pp 473-478.
[10] Crabtree, Robert H. The organometallic chemistry of the transition metals: 4th edition, pp
309-324.
[11] (a) Doyle, M.; McKervey, M.; Ye, T. Modern Catalytic Methods for Organic Synthesis with
Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998. (b) Dorwald, F. Z.;
Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999. (c) Regitz, M.;
Maas, G. Aliphatic Diazo Compounds Properties and Synthesis; Academic Press: New York,
1986. (d) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (e) Davies, H. M. L.;
Antoulinakis, E. G. Org. React. (New York) 2001, 57, 1. (f) Zaragoza Dörwald, F. Metal
Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, 1999.
[12] Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
[13] (a) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998,
120, 9104. (b) Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J.;
Angew. Chem. Int. Ed. 2002, 41, 2132. (c) Cariou, K.; Mainetti, E.; Fensterbank, L.; Malacria,
M. Tetrahedron 2004, 60, 9745. (d) Nieto-Oberhuber, C.; Lopez, S.; Muñoz, M. P.; Jimenez-
Nunez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1694. (e)
Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am.Chem. Soc. 2004, 126, 8654. (f) Harrak,
Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouries, V.; Dhimane, A. L.;
49 19/02/2014
Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (g) Luzung, M. R.; Markham,
J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858. (h) Johansson, M. J.; Gorin, D. J.;
Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (i) Nishibayashi, Y.; Yoshikawa,
M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2004, 126, 16066. (j) Miki, K.; Ohe, K.;
Uemura, S.; Tetrahedron Lett. 2003, 44, 2019. (k) Marion, N.; de Fremont, P.; Lemiere, G.;
Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048. (l)
Fürstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006.
[14] (a) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem. 2007, 119, 909; Angew Chem. Int.
Ed. 2007, 46, 909. (b) Shi, F.- Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.- X. J. Am. Chem. Soc. 2007,
129, 15503. (c) Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem. Int. Ed. 2010,
49, 4269. (d) Lee, J. H.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 912. (e) Kusama, H.;
Ebisawa, M.; Funami, H.; Iwasawa, N. J. Am. Chem. Soc. 2009, 131, 16352. (f) Buzas, A.;
Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614. (g) Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel,
E.; Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. Angew. Chem. 2004, 116, 2456; Angew.
Chem. Int. Ed. 2004, 43, 2402. (h) Nieto-Oberhuber, C.; López, S.; Jiménez-Núñez, E.;
Echavarren, A. M. Chem. Eur. J. 2006, 12, 1677. (i) Kuwasa, H.; Funami, H.; Takaya, J.;
Iwasawa, N. Org. Lett. 2004, 6, 605.
[15] For other examples of 1,2-alkyl migrations of platinum–carbene intermediates, see: (a)
Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605. (b) Kusama, H.;
Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289. (c) Sun, J.; Conley, M. P.; Zhang,
L.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705.
[16] (a) Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (b)
Méndez, M.; Muñoz, M. P.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc.
50 19/02/2014
Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
2001, 123, 10511. (c) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M.
Organometallics. 2005, 24, 1293. (d) Nieto-Oberhuber, C.; Lopez, S.; Muñoz, M. P.; D.
Cárdenas, J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 6146.
[17] For the determination of platinum(II)-π-complexed allenes, see: Salvadori, P.; Uccello-
Barretta, G.; Lazzaroni, R.; Caporusso, A. M. J. Chem. Soc. Chem. Commun. 1990, 1121.
[18] A related pentadienyl cationic intermediate is proposed in the gold(I)-catalyzed reaction of
enynyl actates; see: (a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (b) Marion, N.; González,
S.; de Frémont, Díez- P.; Noble, A. R.; Nolan, S. P. Angew. Chem. 2006, 118, 3729; Angew.
Chem. Int. Ed. 2006, 45, 3647. (c) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (d)
Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802.
[19] (a) Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R.-S. Org. Lett. 2006, 8, 883. (b) Oh, C.
H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew. Chem. Int. Ed. 2008, 47, 7505. (c)
Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123, 5814. (d) Prasad, B. A. B.;
Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468. (e) Adams, J.; Poupart, M.
A.; Grenier, L.; Schaller, C.; Ouimet, N.; Frenette, R. Tetrahedron Lett. 1989, 30, 1749. (f) Ye,
T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
[20] Selected examples: (a) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. J. Am.
Chem. Soc. 2007, 129, 5836. (b) Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129,
4906. (c) Yin, G.; Liu, G. Angew. Chem. 2008, 120, 5522; Angew. Chem. Int. Ed. 2008, 47,
5442. (d) Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Am. Chem. Soc.
2009, 131, 3452.
51 19/02/2014
Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
[21] (a) Zhang, Q.; Xu, W.; Lu, X. J. Org. Chem. 2005, 70, 1505. (b) Zhang, Q.; Lu, X. J. Am.
Chem. Soc. 2000, 122, 7604. (c) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059. (d) Xu,
W.; Kong, A.; Lu, X. J. Org. Chem. 2006, 71, 3854.
[22] (a) Witham, C. A.; Mauleón, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem.
Soc. 2007, 129, 5838. (b) Taduri, B. P.; Abu Sohel, S. M.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S.
Chem. Commun. 2007, 2530.
[23] (a) Li, C.-W.; Pati, K.; Lin, G.-Y.; Abu Sohel, S. M.; Hung, H.-H.; Liu, R. S. Angew. Chem.
2010, 122, 10087; Angew. Chem. Int. Ed. 2010, 49, 9891. (b) Ye, L.; He, W.; Zhang, L. J. Am.
Chem. Soc. 2010, 132, 8550. (c) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010,
132, 3258. (d) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. (e) Cui, L.; Ye, L.;
Zhang, L. Chem. Commun. 2010, 46, 3351. (f) Davies, P. W.; Cremonesi, A.; Martin, N. Chem.
Commun. 2011, 47, 379.
[24] For Ph2SO-induced redox reactions, see: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc.
2007, 129, 4160. (b) Li, G.; Zhang, L. Angew. Chem. 2007, 119, 5248; Angew. Chem. Int. Ed.
2007, 46, 5156. (c) Davies, P.W.; Albrecht, S. J-C. Chem. Commun. 2008, 238. (d) Cuenca, A.
B.; Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledόs, A.; Medio- Simόn, M.; Ujaque, G.;
Asensio, G. Org. Lett. 2009, 11, 4906.
[25] For nitrogen-based oxides, see: (a) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009,
11, 1225. (b) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (c) Yeom, H.-S.;
Lee, J.-E.; Shin, S. Angew. Chem. 2008, 120, 7148; Angew. Chem. Int. Ed. 2008, 47, 7040. (d)
Yeom, Lee, H.-S.; Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem.
2010, 122, 1655; Angew. Chem. Int. Ed. 2010, 49, 1611.
52 19/02/2014
Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
[27] We obtained the following results using 1.2 equimolar of diphenylsulfoxide and other
pyridine-based oxides for the 1-1a → 1-2a transformation (DCE, 25 oC, 2 h): Ph2SO (no
reaction), 2-bromopyridine N-oxide (1-2a, 83%), 3-bromo-5-methoxycarbonylpyridine N-oxide
(1-2a, 86%) and 8-isopropylquinoline N-oxide (1-2a, 89%).
[28] Barluenga, J.; Andina, F.; Aznar, F.; Valdés, C. Org. Lett. 2007, 9, 4143.