簡易檢索 / 詳目顯示

研究生: 薩加
論文名稱: 以過渡金屬進行新式烯炔轉換用以合成高度官能基之碳環與雜環化合物
The Transition Metal Catalyzed New Organic Transformation of Enynes for Synthesis of Highly Functionalized Carbocyclic & Heterocyclic Systems
指導教授: 劉瑞雄
口試委員: 劉瑞雄
蔡易州
鄭建鴻
孫仲銘
侯敦仁
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 805
中文關鍵詞: 金催化鋅催化氧化還化炔類烯類
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文分為四個章節探討以金催化劑與鋅催化劑進行新穎的有機合成反應,其中包含了氧化環化反應、高立體選擇性[2+2+3]環化反應、1,4-雙羰基化合物合成與1,4-復分解反應等。
    第一部分利用金催化劑催化1,5烯炔化合物並與氧化劑(8-Methylquinoline N-Oxide)進行氧化環化反應而得茚酮類化合物。天然物中常會見到茚酮化合物的骨架存在,而此骨架的合成是經由氧化炔類而得的α-羰基中間體再度進行碳環化而成。

    第二章結講述的為金催化劑催化1,6烯炔類化合物與硝酮進行[2+2+3]環化反應並且得到高度的鏡像與非鏡像選擇性產物。此反應對於1,6烯炔與硝酮化合物的官能機有極大的容忍度,並且此氮氧結構對於接續的應用與生物上的合成皆有極大的用處。

    第三章敘述一種新穎的方式在3-烯1-炔類化合物進行1,4-雙羰基化合物的合成。利用一鍋方式可將低活性的3-芳香環-3-烯-1炔化合物反應成1,4-雙羰基化合物,並且有高度的Z- E-選擇性。而其反應機構是經由類呋喃化合物中間體,其氫化間參與了烯類氟化反應而得。本部分是第一個成功將3-烯1-炔類化合物合成至1,4-雙羰基化合物的反應。

    第四章則是利用催化劑將3-烯1-炔氮基化合物與芳香亞硝基進行復分解反應,此反應經由銀催化劑與鋅催化劑催化後可得到非預期的3-聯胺基炔類化合物與苯醛,並且進一步的將此兩化合物進行加成而得1,4-氧氮基化合物。


    This dissertation describes the development of new synthetic organic transformation by using gold and zinc salts. Transition metal-catalyzed organic transformations such as Oxidative Cyclization, Di-stereo and Enatioselective [2+2+3] cycloaddition, 1,4-Dioxo Functionalizations, 1,4-Metathesis Reactions of appropriately functionalized organic molecules are described in this dissertation. For sake of convenience and better understanding, the thesis is divided into four chapters.
    The first chapter deals with the Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes Using External Oxidants (8-Methylquinoline N-Oxide) to deliver indanone frameworks. Such indanone core is one of the most commonly encountering skeletons in nature. The core structure of the resulting products are construct through a formal reactions proceed through prior oxidations of alkyne to form α-carbonyl intermediates, followed by intramolecular carbocyclizations.

    The second chapter deals with the Gold-catalyzed diastereo- and enantioselective [2+2+3]-cycloaddition reactions of 1,6-enynes with nitrones. The utility of such reactions is manifested by a wide substrate scopes of 1,6-enynes and nitrones. This Gold-catalyzed diastereo- and enantioselective [2+2+3]-cycloaddition reactions of 1,6-enynes with nitrones deliver 1,2-Oxazepane core which has wide aplication in structural and biological importance.

    The third chapter describes new 1,4-oxo functionalizations of 3-en-1-ynes based on a hydrative oxidation approach. The one-pot dioxo reactions were applicable to various 3-en-1-ynes including unactivated 3-aryl-3-en-1-ynes, giving Z- or E-configured 2-en-1,4-dicarbonyl compounds selectively. In this chapter, mechanistic analysis supported an initial formation of furan intermediates, generated from carbonyl-assisted alkenyl fluorinations of hydration intermediates. This work reports the first success for 1,4-oxo functionations of readily available 3-en-1-ynes to offer highly functionalized alkenes.
    The fourth chapter presents Catalyst-dependent metathesis reactions between 3-en-1-ynamides and nitrosoarenes are described. Particularly notable are the unprecedented 1,4-metathesis reactions catalyzed by Ag(I) or Zn(II) to give 3-imidoylalkynes and benzaldehyde. With 3-en-1-ynamides bearing a cycloalkenyl group, 1,4-oxoimination products were produced efficiently without molecular fragmentation. We have developed metathesis/alkynation cascades for terminal 3-imidoylalkynes and benzaldehyde species generated in situ, to manifest 1,4-hydroxyimination reactions of 3-en-1-ynes.

    LIST OF SCHEMES Chapter I Scheme 1: Generation of metal carbenoid from diazo compounds. Scheme 2: Generation of metal carbenoids by the skeletal rearrangement of 1,n-enynes. Scheme 3: Skeletal rearrangement of 1,6-enynes assisted by metal carbenoid. Scheme 4: Pt-catalyzed tandem bis-cyclopropanation of di-enyne. Scheme 5: Au-catalyzed tandem bis-cyclopropanation of di-enyne. Scheme 6: Metal carbenoid induced [1,2]-hydrogen shift. Scheme 7: Pt-carbenoid mediated C-H insertion. Scheme 8: Stoichiometric oxidation of metal-carbenes. Scheme 9: Pd(II) catalyzed oxidative cyclization of 1,6-enynes. Scheme 10: A Plausible mechanism of Pd(II) catalyzed oxidative cyclization of 1,6-enynes. Scheme 11: Gold -catalyzed oxidative rearrangement of 1,6-enynes. Scheme 12: Au-catalyzed oxidation of alkynes by pyridine N-oxide. Scheme 13: Au-catalyzed oxidation of alkynes by diphenylsulfoxide. Scheme 14: Au-catalyzed oxidation of ynamides with pyridine N-oxide. Scheme 15: General reaction. Scheme 16: List of substrates. Scheme 17: Preparation of 1,5-enyne (1-1a). Scheme 18: Preparation of 1,5-enyne (1-1l). Scheme 19: Generation of α-carbonyl goldcarbenoids. Scheme 20: Applicability of gold-catalyzed oxidative cyclization to additional 1,5- And 1,6-enyne. Scheme 21: A control experiment to clarify the reaction mechanism. Scheme 22: A plausible mechanism for oxidative cyclization of 1,5-enynes. Chapter II 5 5 7 8 8 10 10 11 11 12 13 14 15 15 17 19 20 21 21 25 25 26 Scheme 1: Alder-ene cycloisomerization of enynes. 123 Scheme 2: Different types of cycloisomerization of 1,6 enynes. 125 Scheme 3: Intramolecular stereoselective gold-catalyzed [2+2+2] cycloaddition of ketoenyne. 126 Scheme 4: Intramolecular stereoselective gold-catalyzed [2+2+2] cycloaddition of ketoenyne. 127 Scheme 5: Mechanistic rationale for the key gold(I)-catalyzed cyclization. 129 Scheme 6: Gold-catalyzed intermolecular addition of carbonyl compouns to 1,6-enynes. 130 Scheme 7: Gold-catalyzed intermolecular reaction of 1,5-enynes with aldehyde. 131 Scheme 8: Gold-catalyzed intermolecular reaction of 1,6-enynes with aldehyde. 132 Scheme 9: Palladium-Catalyzed Asymmetric [4+3] Cycloaddition of nitrones 134 Scheme10: (1) Gold Catalyzed Distereoselective tandem cyclization/[3+3] Cycloaddition of 2-(1-Alkynyl)-2-alken-1-ones with Nitrones. (2) Gold Catalyzed Enantioselective tandem cyclization/[3+3] Cycloaddition of 2-(1-Alkynyl)-2-alken-1-ones with Nitrones. 136 136 Scheme 11: Asymmetric Au(I)-catalyzed Cycloisomerisation reactions of 1,6- enynes 137 Scheme 12: Asymmetric Gold-catalyzed Hydroarylation Cyclization reactions of 1,6-enynes. 139 Scheme 13: gold-catalyzed cycloaddition reaction of 1,6-enyne with nitrones. 140 Scheme 14: Bioactive molecule bearing 1,2-Oxazepane 141 Scheme 15: List of substrate 143 Scheme 16: List of Nitrones 144 Scheme 17: Preparation of Benzenoid 1,6-enyne and Nitrone 145 Scheme 18: Preparation of Non-benzenoid 1,6-enynes 146 Scheme 19: Synthesis of (R)-DTBM-Segphos(AuCl)2 152 Scheme 20: X-Ray difraction study for absolute configuration of ((-)-2-5p) 155 Scheme 21: Proposed mechanism for the diastereoselective [2+2+3] cycloaddition 158 Chapter III Scheme 1: General scheme for alkyne hydration 341 Scheme 2: 1,2-oxo functionalization 343 Scheme 3: Wacker-type oxidation of alkynes catalyzed by PdBr2 and CuBr2. 344 Scheme 4: Cu-Catalyzed Oxidative Amidation-Diketonization of Terminallkynes 346 Scheme 5: Gold catalyzed oxidation of alkyne by using Ph2SO 347 Scheme 6: Gold (I)-catalyzed dicarbonylation of phenylacetylene 349 Scheme 7: Gold(I)-catalyzed one pot synthesis of quinoxalines 349 Scheme 8: Gold-catalysed oxidation reactions of ynamides 351 Scheme 9: IBX-mediated oxidation of 2-alkynyl alcohols. 352 Scheme 10: DMDO Oxidation of Ynamides 354 Scheme 11: Oxidation of Alkynes Catalyzed by Methylrhenium Trioxide. 355 Scheme 12: 1,4-oxo functionalization 356 Scheme 13: List of substrates 358 Scheme 14: Preparation of 3-en-1-ynamide (3-1a) 359 Scheme 15: Preparation of 3-en-1-ynamide (3-1h) 360 Scheme 16: Preparation of 3-en-1-ynamide (3-1p) 360 Scheme 17: Zn(II)-Catalyzed 1,4-Dioxo Functionalizations Scheme 18: A control experiment to clarify the reaction mechanism. Scheme 19: A Mechanism for 1,4-Dioxo Reaction 362 363 364 Chapter IV Scheme 1: Enyne Metathesis 509 Scheme 2: Intramolecular Enyne Metathesis Using Fischer Carbene Complex. 512 Scheme 3: Intermolecular Enyne Metathesis. 513 Scheme 4: Alkyne-Carbonyl Metathesis Reaction. 514 Scheme 5: FeCl3-Catalyzed Intramolecular Alkyne-Aldehyde Metathesis. 515 Scheme 6: A formal hetero enyne ring-Closing Metathesis. 516 Scheme 7: Principal Role of a Lewis Acid and Transition Metal Catalyst 517 Scheme 8: Dual Roles of Au(III) Catalyst for the Tandem Cyclization of 1,3- Enynyl Carbonyls. 518 1 Scheme 9: SbF5-EtOH-Catalyzed Reaction of Phenylalkynes with Aldehyde Scheme 10: Reactions of Imines with Alkynyl Sulfides Scheme 11: Imidozirconocene-catalyzed carboamination reaction Scheme 12: Metathesis reaction of Singlet Oxygenation of But-1-en-3-ynes. Scheme 13: General Metathesis Reaction Scheme 14: List of Substrate Scheme 15: List of Nitrosoarenes Scheme 16: List of Cyclic 3-en-1-ynes Substrate Scheme 17: Preparation of 3-en-1-ynamide (4-1a) Scheme 18: Preparation of 3-en-1-ynamide (4-1h) Scheme 19: Preparation of 3-en-1-ynamide (4-1l) Scheme 20: Preparation of 3-en-1-ynamide (4-1r) Scheme 21: Preparation of 3-en-1-ynamide (4-6h) Scheme 22: Preparation of 3-en-1-ynamide (4-6k) Scheme 23: Applicability of Zn(II)-Catalyzed 1,4-Metathesis reactions for One-pot Cascade reactions. Scheme 24: Synthetic Applications of 3-Imidoylalkynol (4-10b). Scheme 25: A Plausible Mechanism for 1,2- and 1,4-Metathesis Reactions 519 520 521 522 523 526 527 528 529 529 530 531 531 532 539 542 543 LIST OF TABLES Chapter I Table 1: Catalyst screening over various acid catalysts. 18 Table 2: Oxidative cyclization of 1,5- enynes via 5-endo-dig mode. 22 Chapter II Table 1: Catalyst Screening for Nitrone cycloaddition with various catalysts 142 Table 2: [2+2+3] Nitrone cycloadditions on various 1,6-enynes 147 Table 3: Cycloadditions of enyne 2-1a with various nitrones 150 Table 4: Chiral Catalyst screening for Enantioselective Cycloaddition Reactions Table 5: Gold-catalyzed enantioselective cycloadditions of various1,6-enynes With Nitrones. Table 6: Gold-catalyzed enantioselective cycloadditions of 1,6-enyne with Various Nitrones. 154 156 157 Chapter III Table 1: Conditions for 1,4-Dioxo Functionalization’s 357 Table 2: Zn(II)-Catalyzed 1,4-Dioxo Functionalizations 362 Chapter IV Table 1: Catalyst Screening for 1,2- versus 1,4-Metathesis Reactions Table 2: Scope for Zn(II)-Catalyzed 1,4-Nitroso/Enyne Metathesis Table 3: Zn(II)-Catalyzed 1,4-Metathesis of 4-3a with Various Nitrosoarenes Table 4: Zn(II)-Catalyzed 1,4-Oxoimination of 3-En-1-ynamides Table 5: Zn(II)-catalyzed One-pot Metathesis/Alkynylation Cascades 524 534 536 538 541 LIST OF FIGURES Chapter I Figure 1: General representation of singlet and triplet carbenes. 3 Figure 2: Fischer carbene and Schrock carbenes. 4 Chapter II Figure 1: Bonding in Au(I/II)/Pt(II) alkyne complexes Figure 2: ORTEP diagram of 2-3a and (-)-2-5p. 123 194 Chapter IV Figure 1: ORTEP diagram of 4-11a 604

    1.11 References:
    [1] (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (b) Volz, F.; Krause, N.;
    Org. Biomol. Chem. 2007, 5, 1519. (c) Sawama, Y.; Sawama Y.; Krause, N. Org. Biomol. Chem.
    2008, 6, 3573. (d) Krause, N.; Belting, V.; Deutsch, C.; Erdsack, J.; Fan, H.-T.; Gockel, B.;
    Hoffmann-Röder, A.; Morita, N.; Volz, F. Pure Appl. Chem. 2008, 80, 1063. (e) Zhou, Q.; Chen,
    X.; Ma, D. Angew. Chem. Int. Ed. 2010, 49, 3517. (f) Molawi, K.; Delpont, N.; Echavarren, A.
    M. Angew. Chem. Int. Ed. 2010, 49, 3517. (f) Fang, C.; Pang, Y.; Forsyth, C. J. Org. Lett. 2010,
    12, 4528.
    [2] Selected reviews: (a) Fürstner, A.; Davies, P. W. Angew. Chem. 2007, 119, 3478; Angew.
    Chem. Int. Ed. 2007, 46, 3410. (b) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. 2006, 118,
    8064; Angew. Chem. Int. Ed. 2006. 45, 7896. (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
    Rev. 2008, 108, 3351. (d) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (e) Abu
    Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269.
    [3] (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3351. (b) Zhang, L.; Sun,
    J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271. (c) Gorin, D. J.; Toste, F. D. Nature.
    2007, 446, 395. (d) Trost, B. M.; Krische, M. J. Synlett. 1998, 1. (e) Aubert, C.; Buisine, O.;
    Malacria, M. Chem. Rev. 2002, 102, 813. (f) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1,
    47 19/02/2014
    Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
    215. (g) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (h) Echavarren, A. M.;
    Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (i) Bruneau, C. Angew. Chem. 2005, 117, 2380;
    Angew. Chem. Int. Ed. 2005, 44, 2328. (j) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. 2006, 118, 206;
    Angew. Chem. Int. Ed. 2006, 45, 200. (k) Nieto-Oberhuber, C.; Lopez, S.; Jiménez-Núñez, E.;
    Echavarren, A. M. Chem. Eur. J. 2006, 12, 5916.
    [4] Only two reports were known for the oxidative cyclizations of 1,6-enynes via oxidative
    removal of gold-carbenoid intermediates. The work of Toste[22a] includes only four 1,6-enyne
    substrates whereas the second study[22b] involves formation of naphthyl gold-carbenoid that is
    kinetically stable.
    [5] (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74,
    93; Angew. Chem. Int. Ed. 1962, 1, 80. (b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991,
    64, 2013. (c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed.
    2000, 39, 2285.
    [6] (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. (b) Fukuda, Y.;
    Utimoto, K. Synthesis, 1991, 975. (c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996,
    61, 3289. (d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343,
    443.
    [7] (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Johansson, M. J.; Gorin,
    D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (c Gorin,) D. J.; Dube, P.;
    Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480. (d) López, S.; Herrero-Gómez, E.; Pérez-
    Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 6029. (e)
    Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (f) For cyclization of allenynes with
    48 19/02/2014
    Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
    nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.;
    Fensterbank, L.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 7596
    [8] (a) Hutchings, G. J. Gold Bull. 1996, 29, 123. (b) Hutchings, G. J. Catal. Today, 2002, 72,
    11.
    [9] (a) Carey, F. A.; Sundberg, R. J. Advanced organic chemistry: Part-B, 5th edition, pp 903-
    947. (b) Morrison, R. T.; Boyd, R. N. Organic chemistry: pp 473-478.
    [10] Crabtree, Robert H. The organometallic chemistry of the transition metals: 4th edition, pp
    309-324.
    [11] (a) Doyle, M.; McKervey, M.; Ye, T. Modern Catalytic Methods for Organic Synthesis with
    Diazo Compounds: From Cyclopropanes to Ylides; Wiley: New York, 1998. (b) Dorwald, F. Z.;
    Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 1999. (c) Regitz, M.;
    Maas, G. Aliphatic Diazo Compounds Properties and Synthesis; Academic Press: New York,
    1986. (d) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (e) Davies, H. M. L.;
    Antoulinakis, E. G. Org. React. (New York) 2001, 57, 1. (f) Zaragoza Dörwald, F. Metal
    Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, 1999.
    [12] Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
    [13] (a) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998,
    120, 9104. (b) Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J.;
    Angew. Chem. Int. Ed. 2002, 41, 2132. (c) Cariou, K.; Mainetti, E.; Fensterbank, L.; Malacria,
    M. Tetrahedron 2004, 60, 9745. (d) Nieto-Oberhuber, C.; Lopez, S.; Muñoz, M. P.; Jimenez-
    Nunez, E.; Buñuel, E.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1694. (e)
    Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am.Chem. Soc. 2004, 126, 8654. (f) Harrak,
    Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouries, V.; Dhimane, A. L.;
    49 19/02/2014
    Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
    Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656. (g) Luzung, M. R.; Markham,
    J. P.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 10858. (h) Johansson, M. J.; Gorin, D. J.;
    Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (i) Nishibayashi, Y.; Yoshikawa,
    M.; Inada, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2004, 126, 16066. (j) Miki, K.; Ohe, K.;
    Uemura, S.; Tetrahedron Lett. 2003, 44, 2019. (k) Marion, N.; de Fremont, P.; Lemiere, G.;
    Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048. (l)
    Fürstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006.
    [14] (a) Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem. 2007, 119, 909; Angew Chem. Int.
    Ed. 2007, 46, 909. (b) Shi, F.- Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.- X. J. Am. Chem. Soc. 2007,
    129, 15503. (c) Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem. Int. Ed. 2010,
    49, 4269. (d) Lee, J. H.; Toste, F. D. Angew. Chem. Int. Ed. 2007, 46, 912. (e) Kusama, H.;
    Ebisawa, M.; Funami, H.; Iwasawa, N. J. Am. Chem. Soc. 2009, 131, 16352. (f) Buzas, A.;
    Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614. (g) Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel,
    E.; Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. Angew. Chem. 2004, 116, 2456; Angew.
    Chem. Int. Ed. 2004, 43, 2402. (h) Nieto-Oberhuber, C.; López, S.; Jiménez-Núñez, E.;
    Echavarren, A. M. Chem. Eur. J. 2006, 12, 1677. (i) Kuwasa, H.; Funami, H.; Takaya, J.;
    Iwasawa, N. Org. Lett. 2004, 6, 605.
    [15] For other examples of 1,2-alkyl migrations of platinum–carbene intermediates, see: (a)
    Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605. (b) Kusama, H.;
    Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett. 2006, 8, 289. (c) Sun, J.; Conley, M. P.; Zhang,
    L.; Kozmin, S. A. J. Am. Chem. Soc. 2006, 128, 9705.
    [16] (a) Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (b)
    Méndez, M.; Muñoz, M. P.; Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc.
    50 19/02/2014
    Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
    2001, 123, 10511. (c) Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M.
    Organometallics. 2005, 24, 1293. (d) Nieto-Oberhuber, C.; Lopez, S.; Muñoz, M. P.; D.
    Cárdenas, J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 6146.
    [17] For the determination of platinum(II)-π-complexed allenes, see: Salvadori, P.; Uccello-
    Barretta, G.; Lazzaroni, R.; Caporusso, A. M. J. Chem. Soc. Chem. Commun. 1990, 1121.
    [18] A related pentadienyl cationic intermediate is proposed in the gold(I)-catalyzed reaction of
    enynyl actates; see: (a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804. (b) Marion, N.; González,
    S.; de Frémont, Díez- P.; Noble, A. R.; Nolan, S. P. Angew. Chem. 2006, 118, 3729; Angew.
    Chem. Int. Ed. 2006, 45, 3647. (c) Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442. (d)
    Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802.
    [19] (a) Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R.-S. Org. Lett. 2006, 8, 883. (b) Oh, C.
    H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew. Chem. Int. Ed. 2008, 47, 7505. (c)
    Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123, 5814. (d) Prasad, B. A. B.;
    Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468. (e) Adams, J.; Poupart, M.
    A.; Grenier, L.; Schaller, C.; Ouimet, N.; Frenette, R. Tetrahedron Lett. 1989, 30, 1749. (f) Ye,
    T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091.
    [20] Selected examples: (a) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. J. Am.
    Chem. Soc. 2007, 129, 5836. (b) Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129,
    4906. (c) Yin, G.; Liu, G. Angew. Chem. 2008, 120, 5522; Angew. Chem. Int. Ed. 2008, 47,
    5442. (d) Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H. J. Am. Chem. Soc.
    2009, 131, 3452.
    51 19/02/2014
    Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
    [21] (a) Zhang, Q.; Xu, W.; Lu, X. J. Org. Chem. 2005, 70, 1505. (b) Zhang, Q.; Lu, X. J. Am.
    Chem. Soc. 2000, 122, 7604. (c) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059. (d) Xu,
    W.; Kong, A.; Lu, X. J. Org. Chem. 2006, 71, 3854.
    [22] (a) Witham, C. A.; Mauleón, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem.
    Soc. 2007, 129, 5838. (b) Taduri, B. P.; Abu Sohel, S. M.; Cheng, H.-M.; Lin, G.-Y.; Liu, R.-S.
    Chem. Commun. 2007, 2530.
    [23] (a) Li, C.-W.; Pati, K.; Lin, G.-Y.; Abu Sohel, S. M.; Hung, H.-H.; Liu, R. S. Angew. Chem.
    2010, 122, 10087; Angew. Chem. Int. Ed. 2010, 49, 9891. (b) Ye, L.; He, W.; Zhang, L. J. Am.
    Chem. Soc. 2010, 132, 8550. (c) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010,
    132, 3258. (d) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070. (e) Cui, L.; Ye, L.;
    Zhang, L. Chem. Commun. 2010, 46, 3351. (f) Davies, P. W.; Cremonesi, A.; Martin, N. Chem.
    Commun. 2011, 47, 379.
    [24] For Ph2SO-induced redox reactions, see: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc.
    2007, 129, 4160. (b) Li, G.; Zhang, L. Angew. Chem. 2007, 119, 5248; Angew. Chem. Int. Ed.
    2007, 46, 5156. (c) Davies, P.W.; Albrecht, S. J-C. Chem. Commun. 2008, 238. (d) Cuenca, A.
    B.; Montserrat, S.; Hossain, K. M.; Mancha, G.; Lledόs, A.; Medio- Simόn, M.; Ujaque, G.;
    Asensio, G. Org. Lett. 2009, 11, 4906.
    [25] For nitrogen-based oxides, see: (a) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009,
    11, 1225. (b) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (c) Yeom, H.-S.;
    Lee, J.-E.; Shin, S. Angew. Chem. 2008, 120, 7148; Angew. Chem. Int. Ed. 2008, 47, 7040. (d)
    Yeom, Lee, H.-S.; Y.; Jeong, J.; So, E.; Hwang, S.; Lee, J.-E.; Lee, S. S.; Shin, S. Angew. Chem.
    2010, 122, 1655; Angew. Chem. Int. Ed. 2010, 49, 1611.
    52 19/02/2014
    Chapter 1: Gold-Catalyzed Oxidative Cyclization of 1,5-Enynes .
    [27] We obtained the following results using 1.2 equimolar of diphenylsulfoxide and other
    pyridine-based oxides for the 1-1a → 1-2a transformation (DCE, 25 oC, 2 h): Ph2SO (no
    reaction), 2-bromopyridine N-oxide (1-2a, 83%), 3-bromo-5-methoxycarbonylpyridine N-oxide
    (1-2a, 86%) and 8-isopropylquinoline N-oxide (1-2a, 89%).
    [28] Barluenga, J.; Andina, F.; Aznar, F.; Valdés, C. Org. Lett. 2007, 9, 4143.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE