簡易檢索 / 詳目顯示

研究生: 周旨謙
Chou, Tzu-Chien
論文名稱: 應用於5G頻段之極低功耗低雜訊放大器
Ultra-Low-power Low-Noise Amplifiers for 5G Applications
指導教授: 徐碩鴻
Hsu, Shou-Hung
口試委員: 李俊興
Li, Chun-Hsing
孟慶宗
Meng, Chin-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 72
中文關鍵詞: 低雜訊放大器低功耗設計第五代通訊
外文關鍵詞: low noise amplifier, low power design, 5G
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著無線通訊系統的不斷提升,對資料的傳輸量要求越來越高,所以從較低的頻段發展到高頻的5G頻段,如此高頻的應用包括雷達、高速通訊和生醫影像傳輸。
    無線接收機前端電路一般架構中,低雜訊放大器(LNA)為接受端系統最為重要的一塊。主宰著整個系統的雜訊,同時也需要足夠的增益(Gain)來放大接受的訊號!。
    然而,在操作頻高達28GHz的5G頻段下,由於寄生效應,使得放大器的增益即使在達到共軛匹配的情況下,還是難以提高。其中一解決方式為提升供給電壓VDD來達成足夠的增益,但是此方式並不利於目前5G產品邁向低功耗設計的走向。另一方面,低雜訊放大器中的雜訊也與供給電壓(VDD)成Trade off的關係,意即要降低雜訊勢必要提高供給電壓(VDD),而提高供給電壓(VDD)的話又會增加電路的功耗。因此,本研究試著使用新型的電路架構來設計低功耗低雜訊放大器,並且有著足夠的增益。改善並解決以上所提到的問題。
    本篇論文運用新型純化的電路架構,讓第一顆低雜訊放大器(LNA)有著15dB的增益、4.4dB的雜訊指數且只消耗1.56毫瓦。第二顆低雜訊放大器(LNA)有著17.2dB的增益、3.9dB的雜訊指數且只消耗2.75毫瓦,整體電路效能皆高於參考文獻的作品。


    Continuous scaling of CMOS technology keeps driving the innovation of RFICs with higher integration level and lower cost. Significant efforts on the study of both devices and circuits also substantiate the wireless communication systems operating toward higher frequencies. Using the 5G-band for short-range and high data-rate wireless communication and anti-collision radars is recently of great interest to both industry and academia. Similar with other portable wireless applications, low-power design is a critical issue.
    Our target is to achieve ultra low-power low-noise amplifiers at 28 GHz, The gain, and noise are also the main design considerations. The proposed circuit use the neutralization method to cancel the effect of the gate-drain parasitic capacitance C_gd and obtain high gain, low power, and low noise performance for circuit simultaneously.
    Two compact ultra-low-power 28 GHz low-noise amplifiers both with a power consumption of below 3 mW and core area below 0.6mm2 are demonstrated in 90 nm CMOS.
    The first LNA circuit achieves a peak gain of 15 dB and a minimum NF of 4.4 dB under a supply voltage of 0.48 V. The associated power consumption is only 1.56 mW. The second LNA circuit in obtains a peak gain of 17.2 dB and a minimum NF of 3.9 dB under a supply voltage of 0.48 V. The associated power consumption is only 2.75 mW. Both of LNAs achieve excellent figure-of-merits, among the best compared with previous published works.

    致謝 III 摘要 IV ABSTRACT V TABLE OF CONTENTS………………………………………………...............................VI LIST OF FIGURES……………………………………………………………………….VIII LIST OF TABLES…………………………………….........................................................XII Chapter 1 Introduction 1 Chapter 2 Fundamentals of RF Design 2 2.1 Units in RF Design 2 2.2 Nonlinearity 4 2.3 Noise 10 2.4 Sensitivity and Dynamic Rang 16 2.5 Power Gain Boosting…………………………………………………………….....17 2.5.1 Relationship Between U and Gmax…………………………………………..17 2.5.2 The Gain-Plane Approach Under the Condition | A|>> 1……………………..19 2.5.3 General Gain-Plane Approach for All Values of MSG………………………..22 2.5.4 Necessary and Sufficient Condition for Maximum Power Gain………………25 2.5.5 Study of Y-Embedding and Z- Embedding Networks Using Gain-Plane Approach……………………………………………………………………………………..26 Chapter 3 Low power topology for LNA design 30 3.1 Current Reuse 30 3.2 Gate Biasing 36 3.2.1 Strong Inversion……………………………………………………………...36 3.2.2 Weak Inversion…………………………………………………………….....38 3.2.3 Moderate Inversion…………………………………………………………...39 3.2.4 Moderate and Weak Inversion Benefits………………………………………39 3.3 Forward Body Biasing 41 Chapter 4 Double Transformer-Feedback LNA design 42 4-1 Introduction 42 4-2 Purposed LNA 43 4.2.1 Transformer-Feedback Technique for noise and input impedance matching 43 4.2.2 Performance of Transformers 45 4-3 Simulation and Measurement 49 4-4 Conclusion 52 Chapter 5 Triple Transformer-Feedback LNA design 54 5-1 Introduction 54 5-2 Purposed LNA 55 5.2.1 Transformer-Feedback Technique for noise and input impedance matching 55 5.2.2 Performance of Transformers 58 5-3 Simulation and Measurement 64 5-4 Conclusion 67 Chapter 6 Conclusion and Future Works 69 6-1 Conclusion 69 6-2 Future works 69 REFERENCES 71

    [1] E. Adabi, B. Heydari, M. Bohsali, and A. M. Niknejad, “30 GHz CMOS low noise amplifier,” in Proc. IEEE RFIC Symp., 2007, pp. 625–628.
    [2] M. A. T. Sanduleanu, G. Zhang, and J. R. Long, “31–34 GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS,” in Proc. IEEE RFIC Symp., 2006, pp. 143–145.
    [3] A. Singhakowinta and A. R. Boothroyd, “Gain capability of two-port amplifiers,” Int. J. Electron., vol. 21, no. 6, pp. 549–560, 1966.
    [4] R. Spence, Linear Active Networks. New York, NY, USA: Wiley, 1970.
    [5] A. A. Muller et al., “Apollonius unilateral transducer constant power gain circles on 3D Smith charts,” Electron. Lett., vol. 50, no. 21, pp. 1531–1533, Oct. 2014.
    [6] S. Amakawa, “Theory of gain and stability of small-signal amplifiers with lossless reciprocal feedback,” in Proc. Asia-Pacific Microw. Conf. (APMC), 2014, pp. 1184–1186.
    [7] M. S. Gupta, “Power gain in feedback amplifiers, a classic revisited,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 5, pp. 864–879, May 1992.
    [8] Y. S. Wang and L. H. Lu, “5.7 GHz low-power variable-gain LNA in 0.18 μm CMOS,” Electronics Lett., vol. 41, pp. 66-68, 2005.
    [9] C.-Y. Cha and S.-G. Lee, “A 5.2-GHz LNA in 0.35-μm CMOS utilizing inter-stage series resonance and optimizing the substrate resistance,” IEEE J. of Solid-State Circuits, vol. 38, pp. 669-672, Apr. 2003.
    [10] C.-H. Liao and H.-R. Chuang, “A 5.7-GHz 0.18-μm CMOS gaincontrolled differential LNA with current reuse for WLAN receiver,” IEEE Microw. Wireless Compon. Lett., vol. 13, pp. 526-528, Dec. 2003.
    [11] B. Razavi, “ RF Microelectronics”, 1st ed. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [12] J. Jin and S. Hsu, “A 0.18- CMOS balanced amplifier for 24-GHz applications,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 440–445, Feb. 2008.
    [13] M. T. Reiha, J. R. Long, and J. J. Pekarik, “A 1.2 V reactive-feedback 3.1–10.6 GHz ultrawideband low-noise amplifier in 0.13 CMOS,” in Proc. IEEE RFIC Symp., 2006, pp.41-44.
    [14] Y. Wei, S.Hsu, and J. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116–118, Feb.2009.
    [15] D. Cassan and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5 GHz WLAN in 0.18 CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 427–435, Mar.2003.
    [16] B. Razavi, “ Design of integrated circuits for optical communication” McGraw-Hill College,2012.
    [17] B. Razavi, “Design of Analog CMOS Integrated Circuits” McGraw-Hill College,2016.
    [18] O. Momeni and E. Afshari, "A high gain 107 GHz amplifier in 130 nm CMOS," in IEEE Custom Integrated Circuits Conference (CICC), 2011, 2011, pp. 1-4.
    [19] Hadi Bameri; Omeed Momeni , "A High-Gain mm-Wave Amplifier Design: An Analytical Approach to Power Gain Boosting,” in IEEE Journal of Solid-State Circuits ( Volume: 52, Issue: 2, Feb. 2017 ), pp. 357 – 370.
    [20] Zheng Wang; Payam Heydari "A Study of Operating Condition and Design Methods to Achieve the Upper Limit of Power Gain in Amplifiers at Near- fmax Frequencies" in IEEE Transactions on Circuits and Systems I: Regular Papers ( Volume: 64, Issue: 2, Feb. 2017 ) pp. 261 – 271.
    [21] Z. Wang et al., “A CMOS 210-GHz fundamental transceiver with OOK modulation,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 564–580, Mar. 2014.
    [22] S. Kang et al., “A 240 GHz fully integrated wideband QPSK transmitter in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2256–2267, Oct. 2015.
    [23] K. Katayama et al., “A 300 GHz 40nm CMOS transmitter with 32-QAM 17.5Gb/s/ch capability over 6 channels,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2016, pp. 342–343.
    [24] I. Hosako et al., “At the dawn of a new era in terahertz technology,” Proc. IEEE, vol. 95, no. 8, pp. 1611–1623, Aug. 2007.
    [25] Alvarado, Unai, “Low power RF circuit design in standard CMOS technology” Springer,2011.

    QR CODE