研究生: |
黃冠儒 Guan-Ru Huang |
---|---|
論文名稱: |
高溫純水中82合金與304低碳不□鋼異材銲件之應力腐蝕研究 An Investigation into Stress Corrosion Cracking of 304L SS-Alloy 82 Dissimilar Metal Weld in High Temperature Pure Water |
指導教授: |
蔡春鴻
Chuen-Horng Tsai 葉宗洸 Tsung-Kuang Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
中文關鍵詞: | 輕水式反應器 、異材金屬焊件 、應力腐蝕龜裂 、殘留應力 |
外文關鍵詞: | Light Water Reactor, Dissimilar Metal Weld, Stress Corrosion Crack, Residual Stress |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,許多商用輕水式反應器(Light Water Reactor, LWR)的結構組件更陸續出現異材金屬銲件的應力腐蝕龜裂(Stress Corrosion Crack, SCC) 問題,世界各國的研發機構也因此投入相當大的人力進行相關議題的研究。國內電廠結構組件上銲件所使用沃斯田不□鋼(304與304L)與82合金,亦非常可能面臨類似的SCC問題,因此值得在模擬國內核一、二廠水化學環境中,針對此類銲件進行殘留應力與SCC分析研究。本實驗研究鎳基合金與沃斯田系不□鋼異材間的應力腐蝕龜裂行為,探討銲件母材與鎳基合金Alloy 82銲道應力腐蝕龜裂敏感性(Susceptibility)及裂縫生長行為。銲件經銲後熱處理(Post-weld Heat Treatment)、珠擊(Shot Peening)面處理後、固溶退火(solution annealing)處理與表面研磨(surface polishing),對於防治應力腐蝕劣化效益的測試評估。經由慢速拉伸實驗結果得知,較慢的拉伸速率較易產生SCC的破裂機制。另外也得知,經由(6500C/24hrs)銲後熱處理的試樣較容易產生IGSCC,而珠擊處理與固溶退火處理則不容易。珠擊處理可將試樣強度提升,固溶退火則是伸長量提升。經由本實驗得知珠擊處理與固溶退火處理都有良好的抑制IGSCC效果。
關鍵字:輕水式反應器、異材金屬焊件、應力腐蝕龜裂、殘留應力。
(1) 0. M. Shindo et al, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials 233-237(1996)1393-1396.
(2) M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion . Vol.55 No.11 pp.1101-1109.
(3) S. Arsene, J. B. Bai, P. Bompard, “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C,” Metallurgical and Materials Transactions A, Vol. 34, No 3, 1 March 2003, pp. 553-566.
(4) P. L. Andresen and C. L. Briant, Corrosion-June, (1989)p448~463
(5) R. Katsura, M. Kodama, and S. Nishimura, Corrosion-May, (1992) p.384~390
(6) L. G. Ljungberg, Nuclear Engineering andDesign81(1984)121~125
(7) P. L. Andresen, “Factors Governing The Prediction of LWR Component SCC Behavior from Laboratory Data”, CORROSION/99, paper no.145, Houston, TX, NACE International
(8) M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International
(9) D. O. Sprowls, Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH, p245~279, 1987.
(10) R. H. Jones,Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH(1987) p.145~162.
(11) H. H. Uhlig, R. W. Revie, Corrosion and Corrosion Control, 3rd ed.
(12) Y. Ueda, K. Nakacho, T. Shimizu, “Improvement of Residual Stresses of Circumferential Joint of Pipe by Heat-Sink Welding,” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 108, no. 1, pp. 14-23. Nov. 1986.
(13) N. R. Hughes, T. P. Diaz, V. V. Pestanas, “Qualification of Induction Heating Stress Improvement for Mitigation of Stress Corrosion Cracking, ” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 104, no. 4, pp. 344-350. Nov. 1982.
(14) Electric Power Research Institute, “BWR Water Chemistry Guideline, 1996 Revision,” EPRI TR-103315-R1, 1996.
(15) R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7, BNES, Bournemouth, England, Oct. 13-17, 1996, p. 196.
(16) Y. J. Kim and P. L. Andresen, “Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water,” CORROSION–MAY 1999, Vol. 55, No. 5, p.456-461.
(17) William D. Callister, JR, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION 5th ed, chapter 6, JOHN WILEY.
(18) William D. Callister, JR, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION 5th ed, chapter 8, JOHN WILEY.
(19) Robert E. Read-Hill, Reza Abbaschian, PHYSICAL METALLURGY PRINCIPLES 3rd ed, chapter 22, THOMSON.
(20) N. Saito et al, “Variation of Slow Strain Rate Test Fracture Mode of Type 304L Stainless Steel in 288℃ Water,” Corrosion(2000)-Vol.56, No.1, pp.57-69.
(21) D. H. Hur, M. S. Choi, D. H. Lee, M. H. Song, S. J. Kim, J. H. Han, Nuclear Engineering and Design 227(2004)155—160.
(22) Novotny R. Debarberis L. Sajdl P. Macak J. Kytka M. “STRESS CORROSION CRACKING OF AISI TYPE 316L AND COLD WORKED AISI TYPE304 STAINLESS STEEL IN HIGH TEMPERATURE PRESSURISED WATER”, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Whistler, British Columbia August 19 - 23, 2007
(23) Fuchs, H. O., Metal Fatigue in Engineering, John-Wiley﹠Sons Inc.(1980)
(24) G .F .Li, E .A .Charles, J. Congleton, Corrosion science 43 (2001) 1963—1983
(25) Q. Peng, T. Shoji, S. Ritter, H. P. Seifert, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors –SCC BEHAVIOR IN THE TRANSITIION REGION OF AN ALLOY 182-SA 508 Cl.2 DISSIMILAR WELD JOINT UNDER SIMULATED BWR-NWC CONDITIONS
(26) H. P. Offer, R. M. Horn, A. Q. Chen, Assessment of the Mitigation of SCC by Surface Stress and Material Improvements, 13th
International Conference on Environmental Degradation of
Materials in Nuclear Power Systems Whistler, British Columbia
August 19 - 23, 2007
(27) ASTM E8M-04
(28) A.P. Majidi, M.A. Streicher, Corrosion 40 (1984): p. 584.
(29) D. A. Jones, Principles and Prevention of Corrosion , 2nd ed., Prentice Hall, Upper Saddle River, NJ, (1996).
(30) R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles ”third edition .
(31) 汪建民,“材料分析,”中國材料科學學會
(32) ASTM E384—07
(33) ASM committee on Heat Treating, Metals Hand Book, 9th Ed.,
ASM, Metals Park, OH, 1981, p. 647.
(34) V. Cihal, Intergranular Corrosion of steel and alloysMaterial
Science Monograph, vol. 18, Elsevier, New York, NY, 1984.
(35) A.J. Sedricks, Corrosion of Stainless Steel, 2nd Ed., John Wiley,
NY, 1996.
(36) C. D. Lundin, Welding Research Supplement 61 (2)(1982) 58.
(37) G. Faber, T. Gooch, Welding in the World 20 (5/6) (1982) 88.
(38) R. J. Castro, J.J. de Cadenent, Welding Metallurgy of Stainless and
Heat-Resisting Steels, Cambridge University Press, Cambridge,
1974 p. 158
(39) W. H. Hearns (Ed.), Metal and Their Weldability, vol. 4, Welding
Handbook, seventh ed., American Welding Society, 1982, p. 514.
(40) M. L. Huang, L. Wang, Metallurgical and Materials Transactions A
29A (12) (1998) 3037.
(41) An assessment of the integrity of PWR pressure vessels, Second
report by a study group under the Chairmanship of Dr. W. Marshall,
United Kingdom Atomic Energy Authority, March, 1982, p. 14
(Section 5).
(42) Moore, H. F. and Kommers, J. B., The Fatigue of Metals, McGraw-Hill Book Co., New York, (1927).
(43) Miner, M. A., Cumulative Damage in Fatigue, Journal of Applied Mechanics, 12, A-159, (1945).
(44) ASME SA 312
(45) ASME ER N1 Cr3
(46) M. Akashi, T. Kawamoto, IHI Eng. Rev. 11 (1978): p. 8.
(47) F. Umemura, M. Akashi, T. Kawamoto, Corros. Eng. 29 (1980):
p. 163 (in Japanese).
(48) P.L. Andresen, Corrosion 44 (1988): p. 450.
(49) R.M. Horn, P. L. Andresen, and J. Hickling, “BWR Alloy 182
Stress Corrosion Cracking Experience,” 5th Int. Symp. on
Contribution of Materials Investigation to the Resolution of
Problems Encountered in Pressurized Water Reactors
(Fontevraud 5), Fontevraud, France, September 23 – 27, 2002,
CD-ROM.
(50) R. S. Pathania, A. R. McIlree, and J. Hickling, “Overview of
Primary Water Cracking of Alloys 182/82 in PWRs,” 5th Int.
Symp. on Contribution of Materials Investigation to the Resolution
of Problems Encountered in Pressurized Water Reactors
(Fontevraud 5), Fontevraud, France, September 23 –
27, 2002, CD-ROM.
(51) W.C. Moshier, C.M. Brown, “Effect of Cold Work
and Processing Orientation on Stress Corrosion
Cracking Behavior of Alloy 600”, Corrosion, vol. 56,
no. 3, pp. 307-320 (2000).
(52) D.J. Paraventi, W.C. MoshierBechtel Bettis, THE EFFECT OF
COLD WORK AND DISSOLVED HYDROGEN IN THE
STRESS CORROSION CRACKING OF ALLOY 82
AND ALLOY 182 WELD METAL, Proceedings of the 12th
International Conference on Environmental Degradation of
Materials in Nuclear Power System – Water Reactors –2005
(53) Rooyan, D.V., Cragnolino, C., 1994. Stress Relief Treatment of
Alloy 600 Steam Generator Tubing. EPRI Report, TR-103645.
Palo Alto, CA, USA.
(54) Hernalsteen, P., 1993. PWSCC in the tube expansion zone—an
overview. Nucl. Eng. Des. 143, 131–142.
(55) Palumbo, G., et al., 1997. In-situ nuclear steam generator repair
using electrodeposited nanocrystalline nickel. In: Proceedings of
the 8th International Symposium on Environmental Degradation
of Materials in Nuclear Power Systems-Water Reactors, ANS,
pp. 500–506.
(56) J.R.Hixton, J.H.Kim, R.G.Ballinger, Proc. of the 13th international conference on environmental degradation of materials in nuclear power systems,
Whistler, British Columbia, (2007).
(57) R.Ishibashi, T.Kato, J.Kuniya, H.Fujimori, Y.Kitsunai T.Karasuma and
M.Kodama, Proceedings of the 52nd Japan Conference on Materials and
Environments, (2005), B-208
(58) Takuyo Yamada, Takumi Terachi, Koji Arioka, “SCC Growth of
308L/316L weld metals in hydrogenated and oxygenated
high-temperature water”, Proceedings of JAPAN SOCIETY of
CORROSION ENGINEERING Materials and Environment 2008.
(59) T. Haruna, S. Zhang, T. Shibata, “Analysis of Initiation and Propagation of Stress Corrosion Cracks in Sensitized Type 304 Stainless Steel in High-Temperature Water” ,Corrosion (2004):p1104
(60) M. Sireesha, Shaju K. Albert, V. Shankar, S. Sundaresan, Journal of
Nuclear Materials 279 (2000) 65-76
(61) Jun Peng, Anne Demma, Allan McIlree, Peter J. King,“EFFECTS
OF DISSOLVED HYDROGEN AND HYDROGEN
PEROXIDE ON THEFRACTURE RESISTANCE OF WELD
METALS 182, 52, AND 152 IN SIMULATED PWR
SHUTDOWNENVIRONMENT”, Thirteenth International
Conference on Environmental Degradation of Materials in
Nuclear
Systems-Water Reactors, Whistler, B.C., Canada, August 19-23,
2007
(62) ASTM Standard E837