簡易檢索 / 詳目顯示

研究生: 黃冠儒
Guan-Ru Huang
論文名稱: 高溫純水中82合金與304低碳不□鋼異材銲件之應力腐蝕研究
An Investigation into Stress Corrosion Cracking of 304L SS-Alloy 82 Dissimilar Metal Weld in High Temperature Pure Water
指導教授: 蔡春鴻
Chuen-Horng Tsai
葉宗洸
Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
中文關鍵詞: 輕水式反應器異材金屬焊件應力腐蝕龜裂殘留應力
外文關鍵詞: Light Water Reactor, Dissimilar Metal Weld, Stress Corrosion Crack, Residual Stress
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多商用輕水式反應器(Light Water Reactor, LWR)的結構組件更陸續出現異材金屬銲件的應力腐蝕龜裂(Stress Corrosion Crack, SCC) 問題,世界各國的研發機構也因此投入相當大的人力進行相關議題的研究。國內電廠結構組件上銲件所使用沃斯田不□鋼(304與304L)與82合金,亦非常可能面臨類似的SCC問題,因此值得在模擬國內核一、二廠水化學環境中,針對此類銲件進行殘留應力與SCC分析研究。本實驗研究鎳基合金與沃斯田系不□鋼異材間的應力腐蝕龜裂行為,探討銲件母材與鎳基合金Alloy 82銲道應力腐蝕龜裂敏感性(Susceptibility)及裂縫生長行為。銲件經銲後熱處理(Post-weld Heat Treatment)、珠擊(Shot Peening)面處理後、固溶退火(solution annealing)處理與表面研磨(surface polishing),對於防治應力腐蝕劣化效益的測試評估。經由慢速拉伸實驗結果得知,較慢的拉伸速率較易產生SCC的破裂機制。另外也得知,經由(6500C/24hrs)銲後熱處理的試樣較容易產生IGSCC,而珠擊處理與固溶退火處理則不容易。珠擊處理可將試樣強度提升,固溶退火則是伸長量提升。經由本實驗得知珠擊處理與固溶退火處理都有良好的抑制IGSCC效果。
    關鍵字:輕水式反應器、異材金屬焊件、應力腐蝕龜裂、殘留應力。


    摘要……………………………………………………………….…… I 目錄……………………………………………………………….…… II 圖目錄…………………………………………………………….…….V 表目錄…………………………………………………………….….....IX 第一章 前言……………………………………………………….…….1 第二章 文獻回顧………………………………………………….…….5 2.1 304L高溫純水中的應力腐蝕破裂型態………………….…….5 2.2 異材金屬銲接與應力腐蝕龜裂(SCC)的關係…………….……8 2.3 實驗試樣之不同前處理對於應力腐蝕龜裂的影響………….15 2.3.1銲後熱處理(Post-weld Heat Treatment)………………… 15 2.3.2 珠擊處理(Shot Peening Treatment)……………………...18 2.3.3 冷作加工(Cold Working)……………………….………..19 2.3.4 表面研磨(Surface Polishing)…………………………….22 第三章 理論基礎……………………….…………………………….24 3.1 應力腐蝕龜裂………………………………………………. 24 3.1.1 應力腐蝕龜裂定義………………………..………...24 3.1.2 應力腐蝕破裂的型態…………………………...….31 3.2 應力應變曲線圖(Stress - Strain curve diagram)……………..34 3.2.1拉伸試驗簡介…………………………………………….34 3.2..2應力-應變的行為〈Stress-Strain Behavior〉…………….36 3.2.3彈性變形〈elastic deformation〉………………………….36 3.2.4塑性變形﹙Plastic Deformation﹚…………………………37 3.2.5延性破裂(Ductile Fracture)…………………………….38 3.3慢速拉伸試驗(Slow Strain Rate Test)………………..……… 40 第四章 實驗設備及步驟……………………………………………..42 4.1 實驗設計及方法……………………………………….………42 4.2 拉伸試樣製作………………………………………………….43 4.3 試樣熱處理、珠擊處理、固溶退火、表面研磨……………….45 4.4 試樣敏化測試………………………………………………….46 4.5 試樣預長氧化膜……………………………………….………47 4.6 慢應變速率拉伸測試………………………………………….48 4.7 實驗設備……………………………………………………….48 4.7.1 高溫高壓水循環系統……………………………………..48 4.7.2參考電極製備……………………………………………...49 4.8 試片材料特性分析與微硬度分析以及殘留應力分………….50 4.8.1 SEM表面顯微結構與EDX成份分析………………….50 4.8.2 微硬度分析………………………………………………50 4.8.3 殘留應力分析……………………………………………51 第五章 結果與討論…………………………………………………..52 5.1 304L與合金82異材銲件之慢應變速率拉伸測試…………..52 5.2 各組拉伸結果之比較與討論………………………………….58 5.2.1 不同前處理的拉伸結果之比較…………………………58 5.2.2 不同應變速的拉伸結果之比較.………...………………73 5.2.3 不同溫度的拉伸結果之比較..…………………………..80 5.2.4 不同前處理之再現性……………………………………82 5.3 敏化程度測試(DL-EPR)……………………………………83 5.4 微硬度分析比較……….……………………………………85 5.5 殘留應力分析結果………………………………………….86 第六章 結論……………………………………………………….….88 參考文獻………………………………………………………………..90 圖目錄 圖2-1 不同敏化程度與水化學環境的304L不□鋼破裂型態SEM分 析圖……………………………………………………………7 圖2-2 為低合金鋼與合金182異質銲接的交界處的成份分析…….9 圖2-3 低合金鋼與合金182異質銲接交界處做微硬度分析……….9 圖2-4 在水化學環境8ppm溶氧與30ppb SO42-下的異質銲接金屬熔 接線附近區域裂縫成長測試………………………………...10 圖2-5 SCC裂縫成長速率與K值作圖(a)合金82 +12%冷加工(b)合金 182……………………………………………………………..11 圖2-6 圖2-6 三種不同異質銲接區的硬度分布比較……………....12 圖2-7 四種銲材的裂縫長度比較………………………………….….13 圖2-8 母材與銲材在不同溫度下的熱膨脹係數………………….….13 圖2-9 合金182在不同條件下的破裂強度實驗結果……………..….14 圖2-10 三種不同溫度下(5600C、6200C、6800C)分別進行20小時銲 後熱處理在異材金屬銲接區的微硬度分析…………….….16 圖2-11 未經由熱處理與5600C、6200C、6800C三種銲後熱處理20小 時的裂縫成長速率的比較…………………………….…...17 圖2-12 裂縫長度與裂縫深度之比較圖………………………….…...19 圖2-13 J-R曲線在316L不同伸長速率做比較………………….…...20 圖2-14 304不□鋼在不同冷加工量的J-R曲線………………….…..21 圖2-15 銲材316L與銲材308L不同情形之裂縫成長速率比較…….22 圖2-16 ReNewTM對於SCC抑制因素…………………………………23 圖3-1 應力腐蝕龜裂三要素…………………………………………..24 圖3-2 圖示因銲接造成不可避免的熱影響區………………………..25 圖3-3 不□鋼之敏化現象…………………………………………......27 圖3-4 SCC裂縫深度隨時間變化和起始與成長趨動力之關係……...29 圖3-5 平滑試片靜態定力拉伸之外加應力與破裂時間關係圖…… .29 圖3-6 預裂試片靜態拉伸之裂縫成長速率應力強度因子關係….….30 圖3-7 應力應變曲線……………………………………………….….35 圖3-8 應力應變圖裡的彈性變形區…………………………………..37 圖3-9 彈性轉塑性變形之應力應變行為……………………………..37 圖3-10 脆性材料與延性材料的應力應變圖比較……………………38 圖3-11 破裂型態的比較………………………………………………40 圖3-12 杯椎破壞的步驟………………………………………………40 圖3-13 裂縫傳播平均速率與溫度倒數之作圖………………………41 圖4-1 拉伸試棒製作流程………………………………………..……45 圖4-2 SSRT異質銲接拉伸圓柱棒完成圖……………………….……45 圖4-3 慢應變速率拉伸測試機台……………………………………..48 圖4-4 實驗流程圖……………………………………………………..49 圖 4-5 殘留應力測試試樣…………………………………………….51 圖5-1 A實驗的SSRT結果應力應變圖………………………………53 圖5-2 B實驗的SSRT結果應力應變圖..……………………………..53 圖5-3 C實驗的SSRT結果應力應變圖………………………………53 圖5-4 D實驗的SSRT結果應力應變圖…………………………….…54 圖5-5 E實驗的SSRT結果應力應變圖……………………………….54 圖5-6 F實驗的SSRT結果應力應變圖………………………………..54 圖5-7 G實驗的SSRT結果應力應變圖………………………………55 圖5-8 H實驗的SSRT結果應力應變圖…………………………….....55 圖5-9 I實驗的SSRT結果應力應變圖………………………………..55 圖5-10 J實驗的SSRT結果應力應變圖………………………………56 圖5-11 K實驗的SSRT結果應力應變圖………………………………56 圖5-12 L實驗的SSRT結果應力應變圖………………………………56 圖5-13 M實驗的SSRT結果應力應變圖……………………………..57 圖5-14 N實驗的SSRT結果應力應變圖………………………………57 圖5-15六種不同前處理之應力應變圖比較…………………………..58 圖5-16 C之SEM圖……………………………………………………60 圖5-17 D之SEM圖…………………………………………………….61 圖5-18 E之SEM圖……………………………………………………62 圖5-19 F之SEM圖…………………………………………………….63 圖5-20 G之SEM圖………….…………………………………………64 圖5-21 H之SEM圖……………………………………………………65 圖5-22五種不同前處理之應力應變圖比較..…………………………67 圖5-23 J之SEM圖……………………….……………………………68 圖5-24 K之SEM圖…………………………………………………….69 圖5-25 L之SEM圖……………………………………………….……70 圖5-26 M之SEM圖………………………………………………..….71 圖5-27 N之SEM圖……………………………………………...…..…72 圖5-28 A與B實驗結果之應力應變圖比較…………………...…..….73 圖5-29 A之SEM圖………………………………………………….…75 圖5-30 B之SEM圖…………….……………………………………...76 圖5-31 C、I 、J之應力應變圖比較…………………………………….77 圖5-32 I之SEM圖……..………………………………………………79 圖5-33 B與C之應力應變比較圖…………………..…………………80 圖5-34 再現性之應力應變比較圖……………………………………82 圖5-35 六種不同前處理之DL-EPR結果…………………………….84 圖5-36 四種前處理之微硬度分析比較………………..……………..85 圖5-37 殘留應力測量位置……………………………………………86 表目錄 表4-1 304L母材成分百分比………………………………………..…43 表4-2 合金82焊材成分百分比……………………………………….44 表4-3 敏化程度與顯微結構的變化………………………………..…47 表5-1 實驗條件總整理……………………………………………..…52 表5-2 六種不同前處理之結果數據比較……………………..............59 表5-3 五種不同前處理之結果數據比較……………………………..67 表5-4 A與B之結果數據比較…………………………………………73 表5-5 C、I、J之結果數據比較………………………………………..78 表5-6 B與C之結果數據比較…………………………………………81 表5-7 六種不同前處理之敏化程度比較……………………………..83 表5-8 敏化程度與顯微結構的變化…………..………………………83 表5-9 四種前處理之微硬度分析比較結果數據……………………..85 表5-10殘留應力結果數據與比較…………………………………….87

    (1) 0. M. Shindo et al, “Effect of minor elements on irradiation assisted stress corrosion cracking of model austenitic stainless steels,” Journal of Nuclear Materials 233-237(1996)1393-1396.
    (2) M. A. Al-Anezi, G. S. Frankel and A. K. Agrawal, ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion . Vol.55 No.11 pp.1101-1109.
    (3) S. Arsene, J. B. Bai, P. Bompard, “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR) ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved, Annealed, and Recrystallized ZIRCALOYs at 20 °C and 300 °C,” Metallurgical and Materials Transactions A, Vol. 34, No 3, 1 March 2003, pp. 553-566.
    (4) P. L. Andresen and C. L. Briant, Corrosion-June, (1989)p448~463
    (5) R. Katsura, M. Kodama, and S. Nishimura, Corrosion-May, (1992) p.384~390
    (6) L. G. Ljungberg, Nuclear Engineering andDesign81(1984)121~125
    (7) P. L. Andresen, “Factors Governing The Prediction of LWR Component SCC Behavior from Laboratory Data”, CORROSION/99, paper no.145, Houston, TX, NACE International
    (8) M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International
    (9) D. O. Sprowls, Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH, p245~279, 1987.
    (10) R. H. Jones,Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH(1987) p.145~162.
    (11) H. H. Uhlig, R. W. Revie, Corrosion and Corrosion Control, 3rd ed.
    (12) Y. Ueda, K. Nakacho, T. Shimizu, “Improvement of Residual Stresses of Circumferential Joint of Pipe by Heat-Sink Welding,” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 108, no. 1, pp. 14-23. Nov. 1986.
    (13) N. R. Hughes, T. P. Diaz, V. V. Pestanas, “Qualification of Induction Heating Stress Improvement for Mitigation of Stress Corrosion Cracking, ” Journal of Pressure Vessel Technology (Transactions of the ASME). Vol. 104, no. 4, pp. 344-350. Nov. 1982.
    (14) Electric Power Research Institute, “BWR Water Chemistry Guideline, 1996 Revision,” EPRI TR-103315-R1, 1996.
    (15) R. L. Cowan, “The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry,” Water Chemistry of Nuclear Reactor Systems 7, BNES, Bournemouth, England, Oct. 13-17, 1996, p. 196.
    (16) Y. J. Kim and P. L. Andresen, “Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water,” CORROSION–MAY 1999, Vol. 55, No. 5, p.456-461.
    (17) William D. Callister, JR, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION 5th ed, chapter 6, JOHN WILEY.
    (18) William D. Callister, JR, MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION 5th ed, chapter 8, JOHN WILEY.
    (19) Robert E. Read-Hill, Reza Abbaschian, PHYSICAL METALLURGY PRINCIPLES 3rd ed, chapter 22, THOMSON.
    (20) N. Saito et al, “Variation of Slow Strain Rate Test Fracture Mode of Type 304L Stainless Steel in 288℃ Water,” Corrosion(2000)-Vol.56, No.1, pp.57-69.
    (21) D. H. Hur, M. S. Choi, D. H. Lee, M. H. Song, S. J. Kim, J. H. Han, Nuclear Engineering and Design 227(2004)155—160.
    (22) Novotny R. Debarberis L. Sajdl P. Macak J. Kytka M. “STRESS CORROSION CRACKING OF AISI TYPE 316L AND COLD WORKED AISI TYPE304 STAINLESS STEEL IN HIGH TEMPERATURE PRESSURISED WATER”, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Whistler, British Columbia August 19 - 23, 2007
    (23) Fuchs, H. O., Metal Fatigue in Engineering, John-Wiley﹠Sons Inc.(1980)
    (24) G .F .Li, E .A .Charles, J. Congleton, Corrosion science 43 (2001) 1963—1983
    (25) Q. Peng, T. Shoji, S. Ritter, H. P. Seifert, Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System – Water Reactors –SCC BEHAVIOR IN THE TRANSITIION REGION OF AN ALLOY 182-SA 508 Cl.2 DISSIMILAR WELD JOINT UNDER SIMULATED BWR-NWC CONDITIONS
    (26) H. P. Offer, R. M. Horn, A. Q. Chen, Assessment of the Mitigation of SCC by Surface Stress and Material Improvements, 13th
    International Conference on Environmental Degradation of
    Materials in Nuclear Power Systems Whistler, British Columbia
    August 19 - 23, 2007
    (27) ASTM E8M-04
    (28) A.P. Majidi, M.A. Streicher, Corrosion 40 (1984): p. 584.
    (29) D. A. Jones, Principles and Prevention of Corrosion , 2nd ed., Prentice Hall, Upper Saddle River, NJ, (1996).
    (30) R. E. Reed-Hill, R. Abbaschian, “Physical Metallurgy Principles ”third edition .
    (31) 汪建民,“材料分析,”中國材料科學學會
    (32) ASTM E384—07
    (33) ASM committee on Heat Treating, Metals Hand Book, 9th Ed.,
    ASM, Metals Park, OH, 1981, p. 647.
    (34) V. Cihal, Intergranular Corrosion of steel and alloysMaterial
    Science Monograph, vol. 18, Elsevier, New York, NY, 1984.
    (35) A.J. Sedricks, Corrosion of Stainless Steel, 2nd Ed., John Wiley,
    NY, 1996.
    (36) C. D. Lundin, Welding Research Supplement 61 (2)(1982) 58.
    (37) G. Faber, T. Gooch, Welding in the World 20 (5/6) (1982) 88.
    (38) R. J. Castro, J.J. de Cadenent, Welding Metallurgy of Stainless and
    Heat-Resisting Steels, Cambridge University Press, Cambridge,
    1974 p. 158
    (39) W. H. Hearns (Ed.), Metal and Their Weldability, vol. 4, Welding
    Handbook, seventh ed., American Welding Society, 1982, p. 514.
    (40) M. L. Huang, L. Wang, Metallurgical and Materials Transactions A
    29A (12) (1998) 3037.
    (41) An assessment of the integrity of PWR pressure vessels, Second
    report by a study group under the Chairmanship of Dr. W. Marshall,
    United Kingdom Atomic Energy Authority, March, 1982, p. 14
    (Section 5).
    (42) Moore, H. F. and Kommers, J. B., The Fatigue of Metals, McGraw-Hill Book Co., New York, (1927).
    (43) Miner, M. A., Cumulative Damage in Fatigue, Journal of Applied Mechanics, 12, A-159, (1945).
    (44) ASME SA 312
    (45) ASME ER N1 Cr3
    (46) M. Akashi, T. Kawamoto, IHI Eng. Rev. 11 (1978): p. 8.
    (47) F. Umemura, M. Akashi, T. Kawamoto, Corros. Eng. 29 (1980):
    p. 163 (in Japanese).
    (48) P.L. Andresen, Corrosion 44 (1988): p. 450.
    (49) R.M. Horn, P. L. Andresen, and J. Hickling, “BWR Alloy 182
    Stress Corrosion Cracking Experience,” 5th Int. Symp. on
    Contribution of Materials Investigation to the Resolution of
    Problems Encountered in Pressurized Water Reactors
    (Fontevraud 5), Fontevraud, France, September 23 – 27, 2002,
    CD-ROM.
    (50) R. S. Pathania, A. R. McIlree, and J. Hickling, “Overview of
    Primary Water Cracking of Alloys 182/82 in PWRs,” 5th Int.
    Symp. on Contribution of Materials Investigation to the Resolution
    of Problems Encountered in Pressurized Water Reactors
    (Fontevraud 5), Fontevraud, France, September 23 –
    27, 2002, CD-ROM.
    (51) W.C. Moshier, C.M. Brown, “Effect of Cold Work
    and Processing Orientation on Stress Corrosion
    Cracking Behavior of Alloy 600”, Corrosion, vol. 56,
    no. 3, pp. 307-320 (2000).
    (52) D.J. Paraventi, W.C. MoshierBechtel Bettis, THE EFFECT OF
    COLD WORK AND DISSOLVED HYDROGEN IN THE
    STRESS CORROSION CRACKING OF ALLOY 82
    AND ALLOY 182 WELD METAL, Proceedings of the 12th
    International Conference on Environmental Degradation of
    Materials in Nuclear Power System – Water Reactors –2005
    (53) Rooyan, D.V., Cragnolino, C., 1994. Stress Relief Treatment of
    Alloy 600 Steam Generator Tubing. EPRI Report, TR-103645.
    Palo Alto, CA, USA.
    (54) Hernalsteen, P., 1993. PWSCC in the tube expansion zone—an
    overview. Nucl. Eng. Des. 143, 131–142.
    (55) Palumbo, G., et al., 1997. In-situ nuclear steam generator repair
    using electrodeposited nanocrystalline nickel. In: Proceedings of
    the 8th International Symposium on Environmental Degradation
    of Materials in Nuclear Power Systems-Water Reactors, ANS,
    pp. 500–506.
    (56) J.R.Hixton, J.H.Kim, R.G.Ballinger, Proc. of the 13th international conference on environmental degradation of materials in nuclear power systems,
    Whistler, British Columbia, (2007).
    (57) R.Ishibashi, T.Kato, J.Kuniya, H.Fujimori, Y.Kitsunai T.Karasuma and
    M.Kodama, Proceedings of the 52nd Japan Conference on Materials and
    Environments, (2005), B-208
    (58) Takuyo Yamada, Takumi Terachi, Koji Arioka, “SCC Growth of
    308L/316L weld metals in hydrogenated and oxygenated
    high-temperature water”, Proceedings of JAPAN SOCIETY of
    CORROSION ENGINEERING Materials and Environment 2008.
    (59) T. Haruna, S. Zhang, T. Shibata, “Analysis of Initiation and Propagation of Stress Corrosion Cracks in Sensitized Type 304 Stainless Steel in High-Temperature Water” ,Corrosion (2004):p1104
    (60) M. Sireesha, Shaju K. Albert, V. Shankar, S. Sundaresan, Journal of
    Nuclear Materials 279 (2000) 65-76
    (61) Jun Peng, Anne Demma, Allan McIlree, Peter J. King,“EFFECTS
    OF DISSOLVED HYDROGEN AND HYDROGEN
    PEROXIDE ON THEFRACTURE RESISTANCE OF WELD
    METALS 182, 52, AND 152 IN SIMULATED PWR
    SHUTDOWNENVIRONMENT”, Thirteenth International
    Conference on Environmental Degradation of Materials in
    Nuclear
    Systems-Water Reactors, Whistler, B.C., Canada, August 19-23,
    2007
    (62) ASTM Standard E837

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE