簡易檢索 / 詳目顯示

研究生: 王清海
Wang, Tsing-Hai
論文名稱: 有機物質對鍶核種在蒙托土吸附行為影響之研究
Effect of Organic Matters on Sr sorption to montmorillonite
指導教授: 鄧希平
Teng, Shi-Ping
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 蒙托土吸附結構位置邊緣位置MINEQL+
外文關鍵詞: Montmorillonite, strontium, sorption, structure sites, edge sites, MINEQL+
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用在自然界中發現的有機小分子作為天然有機分子類比物,探討有機分子對鍶離子(Sr2+)於蒙托土表面吸附行為的影響。並利用MINEQL+模式擬合實驗結果,推論出反應環境的平衡常數logK,藉由觀察logK的改變,討論有機物質存在對鍶離子(Sr2+)吸附行為的影響。
    由MINEQL+模式解析鍶離子(Sr2+)吸附特徵發現,背景陽離子與鍶離子競爭蒙托土平面吸附位置,導致logKx從4.0(I = 0.017 M)降低至2.2(I = 0.1 M),但邊緣吸附位置對鍶離子(Sr2+)的吸附增加,使logKs從-0.3(I = 0.017 M)增加至8.5(I = 0.1 M),表示蒙托土的邊緣吸附位置對鍶離子(Sr2+)有較高的吸附親和力。此外,在相同背景濃度時(I = 0.017 M),當起始鍶離子(Sr2+)濃度從100 ppm降低至10 ppm,logKs從-0.3升高至1.3,顯示在低鍶離子(Sr2+)濃度時,蒙托土的邊緣吸附位置對鍶離子(Sr2+)吸附的重要性增加。
    由巨觀的鍶離子(Sr2+)吸附變化量發現,有機分子對鍶離子(Sr2+)的吸附行為並沒有顯著影響。MINEQL+模式解析發現,有機分子的存在競爭了蒙托土的邊緣吸附位置,導致logKs從-0.3降低至-1.3(羧基類) ~ -2.3(苯環類)。表示在中性與鹼性環境下,有機分子會降低蒙托土對鍶離子(Sr2+)的吸附量。同時,有機分子的存在會產生大量的懸浮固體。
    比較純有機環境和鍶離子(Sr2+)與有機分子共存環境的有機濃度變化,發現鍶離子(Sr2+)存在會增加有機分子的吸附。這表示鍶離子(Sr2+)是有機分子吸附在蒙托土表面的吸附橋梁。並藉由此現象,有機分子被鍶離子(Sr2+)帶入蒙托土的層間,改變層間水的分布狀況。
    由XRD圖譜發現,有機分子與鍶離子(Sr2+)共同存在時,蒙托土層間水分子組成會有不同的影響。在酸性環境下,層間水分子組成沒有明顯的改變。但在中性環境下,雙層水分子組成的層間排列比例會增加。在鹼性環境下,有機分子的存在增加雙層水分子組成的層間。表示鍶離子(Sr2+)將有機分子帶入蒙托土的層間。而FTIR分析結果顯示,有機分子是透過外圈錯合機制吸附於蒙托土表面。


    The influence of natural organic matters (NOMs) on strontium (Sr2+) sorption to montmorillonite was investigated in this study by using some defined structure low-weight organic species as NOMs sarrogates. With assistance of MINEQL+ code, results from Sr2+ sorption were quantified to reaction equilibrium constats (logK).
    It was found that stronger background electrolytes competed with Sr2+ for the structure sorption sites, and caused a decrease in logKx from 4.0 (I = 0.017 M) to 2.2 (I = 0.1 M). However, the logKs rose from -0.3 (I = 0.017 M) to 8.5 (I = 0.1 M), indicating a higher sorption affinity of the edge sorption sites toward Sr2+. Under identical background strength (I = 0.017 M) environments, when Sr2+ concentration droped from 100 ppm to 10 ppm, the corresponding logKs rose from -0.3 to 1.3. This demonstrated the important role of the edge sorptioin sites under low Sr2+ environments.
    By comparing Sr2+ sorption ratios obtained under varios concentrations of organic species, it was found that Sr sorption was unaffected by the presence of organic species. However, results from MINEQL+ code showed that aqueous organic species competed for the edge sorption sites against Sr2+, and reduced the values logKs from -0.3 to -1.3 (COO group) or to -2.3 (aromatic group). This indicated that the presence of organic species would reduce Sr2+ uptake under neutral and alkaline environments. Moreover, organic speices also increased the concentration of suspension solids.
    It was found that organic species uptake was greatly increased with the presence of Sr2+, indicating sorbed Sr2+ acts as sorption bridges for organic species. That is to say, organic species were introduced into interlayer of montmorillonite along with Sr2+. Intercalated organic species rearranged the distribution of interlayer water molecules, resulting in the various compositions of interlayer environments as indicated by XRD observations. Furthermore, FTIR results confirmed that organic species were sorbed to montmorillonite through outer-sphere complexation.

    總目錄 中文摘要………………………………………………………………………………I 英文摘要………………………………………………….………………………….III 致謝……………………………………………………….…………………………..V 總目錄…………………………………………………….………………………….VI 表目錄…… ……………………………………………………………………...... VII 圖目錄……………………………………………………………………………...VIII 1 緒論……………………………………………………………………………....1 2 文獻回顧…………………………………………………………………………3 3 理論…………………………………………………………………………. …11 3-1 土壤的特性……………………………………………………………….11 3-2 表面錯和模式…………………………………………………………….18 4 方法……………………………………………………………………………..24 4-1 實驗架構………………………………………………………………….23 4-2 鍶離子(Sr2+)吸附實驗…………………………………...……………….25 4-3 以MINEQL+擬合實驗結果……………………………………………..30 4-4 表面分析………………………………………………………………….34 5 結果與討論……………………………………………………………………..35 5-1 鍶離子(Sr2+)吸附實驗結果………………………………………...…….35 5-2 有機物質對鍶離子(Sr2+)吸附影響………………………………………42 5-3 有機物質濃度變化……………………………………………………….52 5-4 懸浮固體量的測定……………………………………………………….61 5-5 以光譜證據解析吸附反應機制………………………………………….67 6 結論與建議……………………………………………………………………..87 7 參考文獻………………………………………………………………………..89

    Atkins, P.W., Physical chemistry, sixth edition, Oxford university press, Oxford, UK, 1999.
    Beayens, B., and Bradbury, M.H.. A mechanistic description of Ni and Zn sorption on Na-montmorillite, Part I: Titration and sorption measurements. J. Contam. Hydrol. 1997, 27, 199-222.
    Bohn, H.L., McNeal, B.L., and O’Connor, G.A., Soil Chemistry, 2nd ed., John Wiley & Sons Inc. 1985
    Bourg, I.C., Sposito, G., and Bourg, A.C.M. Modeling the acid-base surface chemistry of montmorillonite, J. Colloid Interface Sci. 2007, 312, 297-310.
    Bowers, G.M., Ravella, R., Komarneni, S., and Mueller, K.T., NMR study of strontium binding by a micaceous mineral, J. Phys. Chem. B, 2006, 110, 7159-7164.
    Cabaniss, S.E., Quantitative structure-property relationships for predicting metal binding by organic ligands, Environ. Sci. Technol. 2008, 42, 5210-5216
    Cheng, H-F., and Reinhard, M., The rate of 2,2-dichloropropane transformation in mineral micropores: implication of sorptive preservation for fate and transport of organic contaminants in the subsurface, Environ. Sci. Technol., 2008, 42, 2879-2885.
    Chen, C.C., and Hayes, K.F., X-ray absorption spectroscopy investigation of aqueous Co(II) and Sr(II) sorption at clay-water interfaces, Geochim. Cosmochim. Acta, 1999, 63, 3205-3215
    Chen, G., Flury, M., and Harsh, J.B., Colloid-facilitated transport of cesium in variably saturated Hanford sediments. Environ. Sci. Technol. 2005, 39, 3435-3442.
    Chen, CL., and Wang, XK., Sorption of Th(IV) to silica as a function of pH, humic/fulvic acid, ionic strength, electrolyte type. Appl. Radiat. Isot., 2007, 65, 155-163.
    Dahiya, S; Tripathi, RM; and Hegde, AG, Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass, J. Hazard. Mater., 2008, 150, 376-386
    de Koning, A., and Comans, R.N.J., Reversibility of radiocaesium sorption onto illite. Geochim. Cosmochim. Acta, 2004, 68, 2815–2823.
    El-Kamash, AM, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations J. Hazard. Mater., 2008, 151, 432-445
    Environmental monitoring system laboratory office of research and development.U.S. Environmental Protection Agency Storet No. 530 Method:160.2 Revision 2.0, 1993
    Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A., Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties, Am. Miner. 2005, 90, 1358-1374.
    Felmy, A.R. Dixon, D.A. Rustad, J.R. Mason, M.J. and Onishi, L.M., The hydrolysis and carbonate complexation of strontium and calcium in aqueous solution. Use of molecular modeling calculations in the development of aqueous thermodynamic models. J. Chem. Thermodynamics, 1998, 30, 1103-1120.
    Frazer, L., Mighty mica-synthetic clay remediates radium, Environ. Health Perspect., 2002, 110, A528-A531
    Giannakopoulos, E., Stathi, P., Dimos, K., Gournis, D., Sanakis, Y., and Deligiannakis, Y., Adsorption and radical stabilization of humic-acid analogues and Pb2+ on restricted phyllomorphous clay, Langmuir, 2006, 22, 6863-6837.
    Giannakopoulou, F; Haidouti, C; Chronopoulou, A; and Gasparatos, D, Sorption behavior of cesium on various soils under different pH levels, J. Hazard. Mater., 2007, 149, 553-556
    Honeyman, B.D., Colloid culprits in contamination. Nature, 1999, 397, 23-24.
    Hsu, CN., Wei, YY., Chuang, JT., Tseng, CL., Yang, JY., Ke, CH., Cheng, HP., and Teng, S.P., Sorption of several safety relevant radionuclides on granite and diorite – a potential repository host rock in the Taiwan area, Radiochim Acta, 2002. 90, 659-664.
    Kang, S.H., and Xing, B.S., Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT, Langmuir, 2007, 23, 7024-7031.
    Kersting, A.B., Efurd, D.W., Finegan, D.L., Rokop, D.J., Smith, D.K., and Thompson, J.L., Migration of plutonium in ground water at the Nevada Test Site. Nature, 1999, 397, 56-59.
    Li, M.H., Wang, TH., and Teng, SP., Experimental and numerical investigations of effect of column length on retardation factor determination: A case study of cesium transport in crushed granite, J. Hazard. Mater., 2009, 162, 530-535,
    McCarthy, J.F., Sanford, W.E., and Stafford, P.L., Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter, Environ. Sci. Technol., 1998, 32, 3901-3906
    McKinley, J.P., Zachara, J.M., Heald, S.M., Dohnalkova, A., Newville, M.G., and Sutton, S.R., Microscale distribution of cesium sorbed to biotite and muscovite. Environ. Sci. Technol., 2004, 38, 1017-1023.
    Medejova, J., FTIR techniques in clay mineral studies, Vibrational Spectroscopy 2003, 31, 1-10.
    Meier, D.M., Urakawa, A., and Baiker, A., Adsorption behavior of salicylic, benzoic, and 2-methyl-2-hexenoic acid on alumina: an in situ modulation excitation PM-IRRAS study, Phys. Chem. Chem. Phys. 2009, 11, 10132-10139
    Miranda-Trevino, J.C., and Coles, C.A., Kaolinite properties, structure and influence of metal retention on pH. Appl. Clay. Sci., 2003, 23, 133-139.
    Noren, K., and Persson, P., Adsorption of monocarboxylates at the water/goethite interface: the importance of hydrogen bonding, Geochim. Cosmochim. Acta, 2007, 71, 5717-5730.
    Olin, A., Nolang, B., Osadchii, E.G., Ohman, L-O., and Rosen, E., Chemical thermodynamics of vol. 1. uranium, vol. 2. americium, vol. 3. technetium, vol. 4. neptunium and plutonium, vol. 5. update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, vol. 6. nickel, vol. 7. selenium, Elsevier, 2005
    Oztop, B., and Shahwan, T., Modification of a montmorillonite-illite clay using alkaline hydrothermal treatment and its application for the removal of aqueous Cs+ ions. J. Colloid Interface Sci., 2006, 295, 303-309.
    Polubesova, T., Chen, Y., Navon, R., and Chefetz, B., Interactions of hydrophobic fractions of dissolved organic matter with Fe3+- and Cu2+- montmorillonite, Environ. Sci. Technol., 2008, 42, 4797-4803.
    Schecher, W.D., and McAvoy, D.C., MINEQL+: A chemical equilibrium modelling system, version 4.5, Environmental Research Software, Hallowell, ME, USA. 2003.
    Shahwan, T., Akar, D., and Eroglu, A.E., Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals. J. Colloid Interface Sci., 2005, 285, 9-17.
    Skoog, D.A., Holler, F.J., and Nieman, T.A. Principles of instrumental analysis, 5th edition, Sauders College Publishing, 1997, USA.
    Solovitch-Vella, N., Garnier, J-M., and Ciffroy, P., Influence of colloid type on the transfer of Co-60 and Sr-85 in silica sand column varying physicochemical conditions. Chemosphere, 2006, 65, 324-331.
    Staunton, S., Dumat, C., and Zsolnay, A., Possible role of organic matter in radiocaesium adsorption in soils, J. Environ. Radioactivity., 2002, 59, 163-173
    Takeda, A., Tsukada, H., Takaku, Y., Akata, N., and Hisamatsu, S., Plant induced changes in concentrations of caesium, strontium and uranium in soil solutions with reference to major ions and dissolved organic matter, J. Environ. Radioactivity, 2008, 99, 900-911
    Tang, J-W., and Johannesson, K.H., Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach, Geochim. Cosmochim. Acta, 2003, 67, 2321-2339
    Thomas, J.E., and Kelley, M.J., Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT), J. Colloid Interface Sci. 2008, 322, 516-526.
    Tsai, S.C., Wang, TH., Wei, YY., Jan, YL., and Teng, SP., Cesium adsorption and distribution onto crushed granite under different phycochemical conditions, J. Hazard. Mater., 2009, 161, 854-861,
    Van Loon, LR; and Glaus, MA, Mechanical compaction of smectite clays increases ion exchange selectivity for cesium, Environ. Sci. Technol., 2008, 42, 1600-1604
    Wang, TH., Li, MH., and Teng, SP., Bridging the gap between batch and column expeiments: a case study of Cs adsorption on granite, J. Hazard. Mater. 2009, 161, 409-415.
    Wendling, L.A., Harsh, J.B., Palmer, C.D., Hamilton, M.A., and Flury, M., Cesium sorption to illite as affected by oxalate. Clays Clay Minerals, 2004, 52, 375-381.
    Xu, C. Santschi, P.H. Zhong, J.Y. Hatcher, P.G. Francis, A.J. Dodge, C.J. Roberts, K.A. Hung, C.C. and Honeyman, B.D., Collodial cutin-like substances cross-linked to siderophore decomposition products mobilizing plutonium from contaminated soils, Environ. Sci. Technol. 2008, 42, 8211-8217.
    Yeh, GT., Siegel, M.D., and Li, MH., Numerical modeling of coupled variably saturated fluid flow and reactive transport with fast and slow chemical reactions. J. Contam. Hydrol. 2001, 47, 379-399.
    Zachara, J.M., Smith, S.C., Liu, C.X., Mckinley, J.P., Serne, R.J., and Gassman, P.L., Sorption of Cs+ to micaceous subsurface sediments from the Handford site, USA. Geochim. Cosmochim. Acta, 2002, 66, 193-211.
    土壤中陽離子交換容量-醋酸鈉法, (83)環署檢字第00529號公告。
    洪崑煌,王明光,陳尊賢,賴朝明,何聖賓,李達源,土壤化學,國立編譯館,1996年。
    陳宏宇,余炳盛,郭瓊瑩,林峰田,由永續發展觀點分析礦產資源之供給及經營管理,中華民國工程環境學會,2007年。
    于文輝,劉從強,MINEQL+軟體在地球化學研究中的應用,礦物岩石地球化學通報,2004,23,270-274.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE