簡易檢索 / 詳目顯示

研究生: 彭彥銘
Yen-Ming Peng
論文名稱: 奈米碳管束之製備及其機械性質之研究
Preparation and Mechanical Property of Carbon Nanotube Bundles
指導教授: 彭宗平
Tsong-Pyng Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 111
中文關鍵詞: 碳材料奈米碳管奈米碳管束模板合成機械性質奈米壓印場發射
外文關鍵詞: carbon materials, carbon nanotubes, CNT bundles, template-synthesis, mechanical property, nanoindentation, field emission
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去十幾年來,碳材料的研究已經有長足的進展,富勒烯的發現開啟了碳材料研究的新視野。此外,Iijima在1991年發現了奈米碳管,其具有許多應用上的潛力,包括電子傳輸、高強度複合材、能源儲存、感測器、場發射面板、奈米尺寸半導體元件、探針、藥物投擲,其中一些應用已經成為實際產品。
    在奈米碳管的製備與性質上,科學家已經投注了非常多的心血研究。本論文係利用多孔氧化鋁模板合成技術,並藉由化學氣相沉積系統裂解乙炔,製備出奈米碳管束。在製備方面﹐嘗試採用一步與二步製程,目的在於改善奈米碳管束之形貌,另一方面,也探討觸媒量對其形貌之影響。此碳管束直徑為200-300nm,長度約達幾個微米以上,並由非晶質碳膜與許多互相纏繞的多壁奈米碳管組成,這些壁奈米碳管直徑平均約為13nm。
    利用白金鍍層將奈米碳管束兩端固定,並使用奈米壓印機量測單根碳管束的機械性質,可得彈性模數約為33 GPa。奈米碳管束的場發射性質量測方面,經由實驗當電流密度到達10 μA/cm2時,可得開啟電場為2.64 V/μm,場效增強係數為891。


    In the past decade, there have been a lot of progress in the research of carbon materials. The discovery of fullerenes has given us a whole new insight into carbon materials. Furthermore, since the carbon nanotubes (CNTs) were discovered by Iijima in 1991, many potential applications have been proposed for carbon nanotubes, including electron transport, high-strength composites, energy storage, sensors, field emission displays, nanometer-sized semiconductor devices, probes, and drug release. Some of these applications have now been realized in commercial products.
    A great deal of effort has been devoted to the research of manufacture and properties of carbon nanotubes. In this study, CNT bundles were fabricated via pyrolysis of hydrocarbons by chemical vapor deposition. A template-synthesis method based on the porous anodic aluminum oxide membrane was applied.
    Both one-step and two-step processes were attempted to improve the morphologies of CNT bundles. The effect of amount of catalyst on fabricating the CNT bundles was studied as well. The bundles with 200-300nm in diameter and several micrometers in length were composed of amorphous carbon film on the outside and tangled muti-walled carbon nanotubes with an average outer diameter of 13nm inside the film.
    In addition, the mechanical properties of the CNT bundles fixed by platinum pads at both ends were studied by nanoindentation. The elastic modulus of a single CNT bundle was calculated to be 33 GPa. The field emission properties were also measured. It exhibited a turn-on field of 2.64 V/μm as the electric current density reached 10 μA/cm2 from the J-E curve. The field enhancement factor was calculated to be 891 from the F-N plot.

    誌謝 摘要 Abstract Chapter 1 Introduction 1-1 Carbon materials 1-2 Carbon nanotubes 1-3 Preparation of carbon nanotubes 1.3.1 Arc discharge 1.3.2 Laser ablation 1.3.3 Chemical vapor deposition 1-4 Growth mechanisms of carbon nanotubes 1-5 Purification of carbon nanotubes 1-6 Structure of carbon nanotubes 1-7 Chemical modification of carbon nanotubes 1.7.1 Opening tubules and filling in metals 1.7.2 Doping 1-8 Properties of carbon nanotubes 1.8.1 Mechanical properties 1.8.2 Field emission 1.8.3 Electron transport properties 1.8.4 Hydrogen storage Chapter 2 Literature Review 2-1 Organometallic-catalyzed CNTs 2-2 Template synthesis of CNTs 2-3 Nanoindentation 2-4 Field emission of carbon nanotubes Chapter 3 Experimental methods 3-1 Preparation of ferrocene-catalyzed CNTs 3-2 Preparation of CNT bundles by AAO template 3-3 Structure analysis 3.3.1 X-ray diffraction 3.3.2 Scanning electron microscopy 3.3.3 Transmission electron microscopy 3.3.4 Thermogravimetric analysis 3-4 Field emission measurement of CNT bundles 3-5 Mechanical measurement of CNT bundles Chapter 4 Results and Discussion 4-1 Ferrocene-catalyzed CNTs 4.1.1 TG analysis of ferrocene-catalyzed CNTs 4.1.2 XRD analysis of ferrocene-catalyzed CNTs 4.1.3 SEM image of ferrocene-catalyzed CNTs 4-2 CNT bundles by AAO tempelate 4.2.1 TG analysis of CNT bundles 4.2.2 SEM analysis of CNT bundles 4.2.3 TEM observation of the CNT bundles 4-3 Mechanical properties of the CNT bundles 4-4 Field emission properties of the CNT bundles Chapter 5 Conclusions References

    1. S. Ijima, Nature 354, 56 (1991).
    2. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 318, 162 (1985)
    3. S. Iijima, T. Ichihashi, Nature 363, 603 (1993).
    4. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Nature 363, 605 (1993).
    5. T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K. Tanigaki, Chem. Phys. Lett. 209, 83 (1993).
    6. T. W. Ebbesen, Ann Rev. Mater. Sci. 24, 235 (1994).
    7. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys. Lett. 243, 49 (1995).
    8. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzer, D. T. Cilbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley, Science 273, 486 (1996).
    9. M. Endo, CHEMTECH 18, 568 (1988).
    10. M. Endo, Ph.D. thesis, University of Orleans, Orleans, France (1975).
    11. S. D. Robertson, Carbon 10, 221 (1972).
    12. R. T. K. Baker, P. S. Harris, Chemistry and Physics of Carbon vol. 14 (Eds.: P. L. Walker, P. A. Thrower), Marcel Dekker, New York (1978).
    13. M. S. Dresselhaus, G. Sugihara, K. Spain, I.L. Goldberg, H. A.: in Graphite Fibers and Filaments, Vol. 5, Springer Series in Materials Science, Springer-Verlag, Berlin (1988).
    14. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, Chemphyschem 2, 78 (2001).
    15. S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, L. K. Norskov, Nature 427, 426 (2004).
    16. M. D. Dresselhaus, G. Dresselhaus, R. Saito, Carbon 33, 883 (1995).
    17. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
    18. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
    19. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 391, 59 (1998).
    20. T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Nature 391, 62 (1998).
    21. P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362, 522 (1993).
    22. S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature 362, 520 (1993).
    23. S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, Nature 372, 159 (1994).
    24. Y. K. Chen, A. Chu, J. Cook, M. L. H. Green, P. J. F. Harris, R. Heesom, M. Humphries, J. Sloan, S. C. Tsang, J. F. C. Turner, J. Mater. Chem. 7, 545 (1997).
    25. W. Y. Jang, N. N. Kulkarni, C. K. Shih, Z. Yao, Appl. Phys, Lett. 84, 1177 (2004).
    26. Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, Phys. Rev. B 50, 4976 (1994).
    27. B. C. Satishkumar, A. Govindaraj, K. R. Harikumar, J. P. Zhang, A. K. Cheetham, C. N. R. Rao, Chem. Phys. Lett. 300, 473 (1999).
    28. O. Stephan, P. M. Ajayan, C. Colliex, P. Redlich, J. M. Lambert, P. Bernier, P. Lefin, Science 266, 1683 (1994).
    29. Y. Zhang, H. Gu, K. Suenaga, S. Iijima, Chem. Phys. Lett. 279, 264 (1997).
    30. M. Terrones, A. M. Benito, C. Mantega-Diego, W. K. Hsu, O. I. Osman, J. P. Hare, D. G. Reid, H. Terrones, A. K. Cheetham, K. Prassides, H. W. Kroto, D. R. M. Walton, Chem. Phys. Lett. 257, 576 (1996).
    31. M. Glerup, M. Castignolles, M. Holzinger, G. Hug, A. Loiseau, P. Bernier, Chem. Comm., 2542 (2003).
    32. Y. Hao, L. Qingwen, Z. Jin, L. Zhongfan, Chem. Phys. Lett. 380, 347 (2003).
    33. D. H. Robertson, D. W. Brenner, J. W. Mintmire, Phys. Rev. B 45, 12592 (1992).
    34. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 381, 678 (1996).
    35. C. V. Lier, C. V. Alsenoy, V. V. Doren, P. Greeligs, Chem. Phys. Lett. 326, 181 (2000).
    36. J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, Adv. Mater. 11, 161 (1999).
    37. E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277, 1971 (1997).
    38. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Phys. Rev. B 58, 14013 (1998).
    39. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Rouff, Science 287, 637 (2000).
    40. Z. W. Pan, S. S. Xie, L. Lu, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, D. L. Zhang, Appl. Phys. Lett. 74, 3152 (1999).
    41. H. W. Zhu, C. L. Xu, D. H. Wu, B. Q. Wei, R. Vajtai, P. M. Ajayan, Science 296, 884 (2002).
    42. Bonard J-M, Salvetat J-P, Stöckli T, Appl. Phys. Lett.73, 918 (1998).
    43. de Heer WA, Chtelain A, Ugrate D, Science 270, 1179 (1995).
    44. Bonard J-M, Salvetat J-P, Stöckli T, Ultramicroscopy 73, 7 (1998).
    45. Bonard J-M, Salvetat J-P, Stöckli T, Appl. Phys. A 69, 245 (1999).
    46. Pan ZW, Au FCK, Lai HL, J. Phys. Chem. B 105, 1519 (2001).
    47. Xu X, Brandes GR, Appl. Phys. Lett.74, 2549 (1999).
    48. Fan SS, Chapling MG, Franking NR, Science 283, 512 (1999).
    49. Fan SS, Liang W, Dang H, Physica E 8, 179 (2000).
    50. Van Vucht JHN, Kuijpers FA, Burning HCAM, Philips Res. Rep. 25, 113 (1970).
    51. Agarwal RK, Noh JS, Schwarz JA, Carbon 25, 219 (1987).
    52. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature 386, 377 (1997).
    53. X. P. Gao, Y. Lan, G. L. Pan, F. Wu, J. Q. Qu, D. Y. Song, P. W. Shen, Electrochem. Solid-State Lett. 4, A173 (2001).
    54. G. P. Dai, C. Liu, M. Liu, M. Z. Wang, H. M. Cheng, Nano Lett. 2, 503 (2002).
    55. X. Yan, X. P. Gao, Y. Li, Z. Q. Liu, F. Wu, Y. Shen, D. Y. Song, Chem. Phys. Lett. 372, 336 (2003).
    56. M. Endo, in Filler Katsuyou Jiten, Taisei-sha, Tokyo, Japan, 235 (1994).
    57. M. Endo, M. Shikata, Ohyo Buturi 54, 507 (1985).
    58. C. N. R. Rao, A. Govindaraj, R. Sen, B. C. Satishkumar, Mat. Res. Innovat. 2, 128 (1998).
    59. M. Terrones, N. Grobert. J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. D. Cheetham, H. W. Kroto, D. R. M. Walton, Nature 388, 52 (1997).
    60. J. C. Hulteen, C. R. Martin, J. Mater. Chem. 7, 1075 (1997).
    61. R. Parthasarathy, C. R. Martin, Nature 369, 298 (1994).
    62. M. Nishzawa, V. P. Menon, C. R. Martin, Science 268, 700 (1995).
    63. B. B. Lakshmi, P. K. Dorhout, C. R. Martin, Chem. Mater. 9, 857 (1997).
    64. R. V. Partharathy, K. L. N. Phani, C. R. Martin, Adv. Mater. 7, 896 (1995).
    65. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Chem. Mater. 10, 260 (1998).
    66. G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature 393, 28 (1998).
    67. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Langmuir 15, 750 (1999).
    68. A. Moore, Chem. Phys. Carbon 11, 69 (1973).
    69. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Chem. Mater. 10, 260 (1998).
    70. T. Kyotani, L. Tsai, A. Tomita, Chem. Mater. 8, 2109 (1996).
    71. B. K. Prahan, T. Toba, T. Kyotani, A. Tomita, Chem. Mater. 10, 2510 (1998).
    72. N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, H. W. Kroto, D. R. M. Walton, M. Terrones, H. Terrones, Ph. Redlich, M. Ruhle, R. Escudero, F. Morales, Appl. Phys. Lett. 75, 3363 (1999).
    73. B. C. Satishkumar, A. Govindaraj, P. V. Vanitha, A. K. Raychaudhuri, C. N. R. Rao, Chem. Phys. Lett. 362, 301 (2002).
    74. X. Li, B. Bhushan, Mater. Characterization 28, 11 (2002).
    75. D. Tabor, The hardness of metals, Oxford Univ. Press, Oxford (1951).
    76. B. Bhushan, Handbook of micro/nanotribology 2nd ed., Boca Raton (FL), CRC Press (1999).
    77. J. B. Pethica, R. Hutchings, W. C. Oliver, Philos. Mag. A 48, 593 (1983).
    78. W. C. Oliver, G. M. Pharr, J. Mater. Res. 7, 1564 (1992).
    79. G. M. Pharr, Mater. Sci. Eng. A 253, 151 (1998).
    80. S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, G. D. Shnyrev, Zavod. Lab. 41, 1137 (1975).
    81. J. B. Pethica, W. C. Oliver, Thin films: stresses and mechanical properties, Materials Research Society Symposium Preceedings vol. 130, Pittsburgh (PA), Materials Research Society, 13 (1989).
    82. S. A. S. Asif, J. B. Pethica, Thin films: stresses and mechanical properties, VI. Materials Research Society Symposium Preceedings vol. 436, Pittsburgh (PA), Materials Research Society, 201 (1997).
    83. I. N. Senddon, Int. J. Eng. Sci. 3, 47 (1965).
    84. J. P. Salvetal, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stöckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, L. Forró, Adv. Mater. 11, 161 (1999).
    85. A. Kis, D. Mihailovic, M. Remskar, A. Mrzel, A. Jesih, I. Piwonski, A. J. Kulik, W. Benoît, L. Forró, Adv. Mater. 15, 733 (2003).
    86. B. Wu, A. Heidelberg, J. J. Boland, Nature Materials 4, 525 (2005).
    87. X. Li, H. Gao, C. J. Murphy, K. K. Caswell, Nano Lett. 3, 1495 (2003)
    88. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999).
    89. O. Groening, O. M. Kuettel, Ch. Emmenegger, P. Groening, L. Schlapbach, J. Vac. Sci. Technol. B 18, 665 (2000).
    90. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, K. Kern, Appl. Phys. Lett. 76, 2071 (2000).
    91. http://www.chemsoc.org/ExemplarChem/entries/2003/bristol_shanley/carbonallotropes/index.htm
    92. R. E. Burgess, H. Kroemer, Phys. Rev. 90, 515 (1953).
    93. http://www.uvm.edu/
    94. http://www.saint-gobain-recherche.com/svi/Nanoindentation/NoteNano.htm
    95. Chen Y, Patel S, Ye Y, Shaw D T, Guo L P, Appl. Phys. Lett. 73, 2119 (1998).
    96. J. Chen, S. Z. Deng, and N. S. Xu, Appl. Phys. Lett. 83, 746 (2003).
    97. C. X. Xu, X. W. Sun, and B. J. Chen, Appl. Phys. Lett. 84, 1540 (2004).
    98. Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, and I. C. Chen, Adv. Funct. Mater. 13, 811 (2003).
    99. F. C. Frederick, K. W. Wong, Y. H. Tang, Y. F. Zhang, and S. T. Lee, Appl. Phys. Lett. 12, 1700 (1999).
    100. Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002).
    101. R. S. Chen, Y. S. Hung, Y. M. Liang, C. S. Hsieh and K. K. Tiong, Appl. Phys. Lett. 84, 1552 (2004).
    102. J. Zhou, S. Z. Deng, N. S. Xu, and J. C. She, Appl. Phys. Lett. 83, 2653 (2003).
    103. Y. Tong, C. Liu, P. X. Hou, H. M. Cheng, N. S. Xu, J. Chen, Physica B 323, 156 (2002).
    104. R.Gao, Z. Wang, Z. Bai, W. de Heer, L. Dai, Phys. Rev. Lett. 85, 622 (2000).
    105. F. Li, M. Cheng, S. Bai, G. Su, M. Dresselhaus, Appl. Phys. Lett. 77, 3161 (2000).
    106. F. Fisher, C. Brinson, Advanced Materials Research Lab, Department of Mechanical Engineering, Northwestern University, http://www.mech.northwestern.edu/fac/brinson/nano/LitReview/LitTry3/intro1.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE