簡易檢索 / 詳目顯示

研究生: 林志鴻
Zi-Hong Lin
論文名稱: 通訊系統之外加高斯雜訊產生器
A Simplified Box-Muller AWGN Generator
指導教授: 張慶元
Tsin-Yuan Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 42
中文關鍵詞: 高斯雜訊產生器
外文關鍵詞: WGNG, Box-muller
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程的演進,通訊系統的模擬速度也隨之提高。在效能方面,相較於傳統以軟體方式在通訊傳輸通道的模擬,硬體的方式可以提高到幾個數量級的傳輸速度。而外加高斯雜訊 (Additive White Gaussian Noise) 產生器在通訊系統上是一個非常重要的角色。

    高斯雜訊(Gaussian noise)是具有正規(高斯)分布(normal distribution)的隨機變數(random variable) ,其平均數(mean)為0、 標準差為1。產生高斯雜訊的演算法主要有五種: 立固瑞定理 (Ziggurat method)、中央極限定理 (Central Limit Theorem)、華勒斯定理(Wallace method)、巴克斯-米勒定理 (Box-Muller algorithm)以及極性定理(Polar method) 。主要是利用線性回授位移暫存器(LFSR,linear feedback shift register)先產生虛擬隨機序列,以這些序列當作種子再經過上述的演算法來產生出高斯雜訊

    高斯雜訊產生器主要是用在可程式化邏輯閘陣列 (FPGA) 晶片的傳輸系統通道模擬上。目前使用的方法是將 Box-Muller 演算法以及中央極限定理兩者結合而成的,這種方法的好處是能夠得到一個高精確度、高速度以及在硬體要求比較低的高斯雜訊產生器。而這篇論文所要提出來的方法是利用對數函數的指數律特性、三角函數的對稱性及週期性的特性所產生的高斯雜訊產生器 (WGNG)。這種方法可以得到一個在功率消耗上比較低但是晶片面積比較大的WGNG。這個AWGN 產生器的架構以及其效能分析將會在後面提出來。這篇論文主要是以標準數位設計流程設計出高斯雜訊產生器,在點18製程下提出架構,這個架構可以達到每秒 100M 樣本的輸出頻率。


    Hardware emulation of communication channels can speed up the process of estimating the performance of a communication system by a few orders of magnitude compared with traditional software-based estimations. The noise generator can be used as a key component in a hardware-based simulation system, such as for exploring channel

    A hardware White Gaussian Noise Generator (WGNG) is developed for mobile communication channel emulation in FPGA circuit. High accuracy, fast and low-cost hardware are reached by combining the Box-Muller and Central limit methods Compared to existing methods, the proposed method costs lower power but more area. The architecture and the performance analysis of our AWGN generators are elaborated.

    A design for a White Gaussian Noise Generator (WGNG) is modified and implemented as a 0.18-μm CMOS digital ASIC for high-speed communication channel emulation. A layout is generated based on a standard digital design flow provided by Canadian Microelectronics Corporation (CMC). This implementation achieves an output rate of 100M samples/sec, which exceeds the speed of the original FPGA implementation by more than four times.

    Abstract…………………………………………………………………1 Contents…………………………………………………………………2 Chapter 1 Introduction………………………………………………3 Chapter 2 Background…………………………………………………7 2.1 Method Overview…………………………………………………………………9 2.1.1 Central Limit Theorem………………………………9 2.1.2 Box-Muller and Polar Method………………………10 2.1.3 Ziggurat Method………………………………………12 2.1.4 Wallace Method…………………………………………14 Chapter 3 Architecture……………………………………………………………17 3.1 Stage I Combined URNG………………………………………19 3.2 Stage II ALG 1 and ALG 2…………………………………23 3.2.1 Log’s feature………………………………………23 3.2.2 Cos’s feature………………………………………24 3.3 Stage III Log Unit and Cos Unit…………………………26 3.4 Sqrt Unit………………………………………………………27 Chapter 4 Experiment Result………………………………………29 4.1 Chi-Square Test………………………………………………30 4.1.1 Types of Chi-Square Test……………………………30 4.1.2 Chi-Square Goodness of Fit Test…………………………31 4.2 Kolmogorov-Smirnov Test……………………………………35 4.3 Performance Analysis………………………………………38 Chapter 5 Conclusion…………………………………………………40 Refrenece………………………………………………………………41

    [1] J.G Proakis, Digital Communications, McGraw -Hill High Education, Electrical and Computer Engineering Series, 2001
    [2] A. Ghazel, E. Boutillon, J. Danger, G. Gulak, H. Laamari, “Design and Performance analysis of high speed AWGN Communication channel Emulator,” PACRIM'01, Victoria, British Columbia, Canada, August 2001
    [3] B. Jung, H. Lenhof, P. Mu¨ ller, and C. Ru¨ b, “Langevin Dynamics. Simulations of Macromolecules on Parallel Computers,” Macromolecular Theory and Simulations, pp. 507-521, 1997.
    [4] ZIGGURAT-BASED HARDWARE GAUSSIAN RANDOM NUMBER GENERATOR Guanglie Zhang, Philip H.W. Leong Dong-U Leet, John D. Villasenor Ray C.C. Cheung, Wayne Luk
    [5] G. Marsaglia and W. Tsang, “The Ziggurat Method for Generating Random Variables,” J. Statistical Software, vol. 5, no. 8, pp. 1-7,2000.
    [6] A NOVEL SCHEME OF IMPLEMENTING HIGH SPEED AWGN COMMUNICATION CHANNEL EMULATORS IN FPGAS Yongquan Fan and Zeljko Zilic
    [7] C. Wallace, “Fast Pseudorandom Generators for Normal and Exponential Variates,” ACM Trans. Math. Software, vol. 22, no. 1, pp. 119-127, 1996.
    [8] G. Box and M. Muller, “A Note on the Generation of Random Normal Deviates,” Annals Math. Statistics, vol. 29, pp. 610-611, 1958.
    [9] http://www-stat.stanford.edu/~susan/courses/s116/node121.html
    [10] P. Atiniramit, Design and implementation of an FPGA-based adaptive filter single-use receiver, Master Thesis, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, 1999
    [11] Marsaglia, George, (1964), Generating a variable from the tail of the normal distribution, Techno-metrics, 6, 101{102.
    [12] C.Wallace, “Fast pseudorandom generators for normal and exponential variates,” ACM Trans. Math. Softw., vol. 22, no. 1, pp. 119–127, 1996.
    [13] R.C. Tausworthe, “Random Numbers Generated by Linear Recurrence Modulo Two,” Math. and Computation, vol. 19, pp. 201-209, 1965.
    [14] J. Hennessy and D. Patterson: “Computer Architecture A Quantitative Approach,”Second Edition,Morgan Kaufmann Publishers,Inc.,1996.Appendix A:Computer Arithmetic by D. Goldberg [15]M.Birman, A. Samuels, G. Chu, T. Chuk, L.Hu,J, McLeod, and J. Barnes, “Developing the WTL3170/3171 sparc Floating-point Coprocessors,”IEEE MICRO February,1990.pp55-64
    [16] J.Bannur and A. Varma, “The VLSI Implementation of A Square Root Algorithm,”Proc. of IEEE Computer Society Press, 1985.pp159-165
    [17] ASIC IMPLEMENTATION OF A HIGH SPEED WGNG FOR COMMUNICATION CHANNEL EMULATION Edmund Fung, Kaston Leung, Nitin Parimi, Madhura Purnaprajna, Vincent C. Gaudet
    [18] A NOVEL SCHEME OF IMPLEMENTING HIGH SPEED AWGN COMMUNICATION CHANNEL EMULATORS IN FPGAS Yongquan Fan and Zeljko Zilic

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE