簡易檢索 / 詳目顯示

研究生: 許承志
Hsu, Cheng-Chih
論文名稱: 穿戴式下肢動力輔具設計與實作
On the Design and Implementation of Wearable Hybrid Assisted Lower Limb Orthosis
指導教授: 陳建祥
Chen, Jian-Shiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 51
中文關鍵詞: 穿戴式下肢輔具HALLOM形扭簧輸出回授滑動控制器
外文關鍵詞: Wearable Lower Limb Orthosis, HALLO, M-shaped flexible rod, output feedback sliding-mode controller
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為設計並實作一穿戴式下肢輔具,針對有能力自行完成坐站、上下樓梯等基本動作的人,從外部給予其膝關節10%的輔助力矩,以達到省力、減少關節負擔,進而達到減緩關節退化的目標。本系統主要於現有架構上,保留既有之研究成果,針對其不足之處提出改進的方法並予以重新設計,目的在於使穿戴式輔具能夠更輕巧、實用性更佳。
    設計的部分依循上述之目標,以特別設計之M形撓性桿件[23]儲存人體由站到坐所減少的位能,再以直流馬達作為可變阻尼控制撓性桿件釋放位能的速度,藉由兩者相互擷抗組合出對膝關節適當之輔助力矩,並配合本文提出之輔助策略以及適合本文需要之離散輸出回授滑動控制器[18]來完成設計目標。最後,穿著輔具完成各種基本動作,並由股四頭肌表面電位訊號(Electromyogram, EMG)來進一步驗證本文之設計成果。


    For people who have the ability to complete basic movements (i.e. sit, stand up and up-down the stairs, etc…), the objective of this thesis is aimed to design and implement a Wearable Hybrid Assisted Lower Limb Orthosis (HALLO), which could provide 10% of knee torque from active device, reducing the burden of knee, and slow down the degradation of knee joint. This thesis is developed based on the first generation of HALLO, but to improve its shortcomings, it will thus be re-designed by new methods. The goal is to make this wearable assistive devices more compact, and practical.
    To achieve these objectives, a special designed M-shaped flexible rod [23] is adopted to store the potential energy between different human body gestures, such as stand and sit, then a DC motor is adopted as a variable damper, to control the releasing rate of potential energy from the flexible rod. Anti-acting of these two forces to perform appropriate leg providing assisting-torque to the knee, then with a discrete-time output feedback sliding-mode controller design [18] is applied to achieve the goals more efficiently. Finally, wearing the device to perform a variety of basic movements are presented through experiments. And the efficacy is further verified by investigating the EMG (electromyogram) signals.

    第一章 緒論 1-1 背景與動機 1-2 現代發展 1-3 本文架構 第二章 問題描述 2-1 動力源與致動器 2-2 機構設計 2-3 輔助策略 2-4 控制策略 第三章 實驗系統架構 3-1 系統架構 3-2 實驗設備介紹 3-3 實驗環境 第四章 實驗結果 4-1 輔具輕量化 4-2 控制器設計與追跡實驗 4-3 穿著輔具動作測試 4-4 以肌電訊號驗證輔助效果 第五章 本文貢獻與未來展望 5-1 總結 5-2 本文貢獻 5-3 未來展望

    [1]Aaron M. Dollar and Hugh Herr, “Design of a Quasi-Passive Knee Exoskeleton to Assist Running,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 747-754, 2008.
    [2]A. Valiente, Design of a Quasi-passive Parallel Leg Exoskeleton to Augment Load-carrying for Walking, Master’s thesis, Dept. Mech. Eng., Massachusetts Inst. Technol., Cambridge, 2005.
    [3]A. B. Zoss, H. Kazerooni, and A. Chu, “Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX),” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 2, pp. 128-138, 2006.
    [4]B. C. Kuo and T. Jacob, DC Motors in Incremental Motion Systems. Champaign, IL: SRL, 1978.
    [5]C. J. Walsh, K. Pasch, and H. Herr, “An Autonomous, Underactuated Exoskeleton for Load-carrying Augmentation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 1410-1415, 2006.
    [6]C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, and H. Herr, “Development of a Lightweight, Underactuated Exoskeleton for Load-carrying Augmentation,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 3485-3491, 2006.
    [7]C. J. Walsh, Biomimetic Design of an Undera-ctuated Leg Exoskeleton for Load-carrying Augmentation, Master’s thesis, Dept. Mech. Eng., Massachusetts Inst. Technol., Cambridge, 2006.
    [8]C. Edwards and S. K. Spurgeon, Sliding Mode Control: Theory and Applications. New York: Taylor & Francis, 1998.
    [9]Dept. of Household Registration Affairs ( MOI), 2009.
    [10]E. Guizzo and H. Goldstein, “The Rise of the Body Bots,” IEEE Spectr., vol. 42, pp. 50-56, 2005.
    [11]G. Stein and M. Athans, “The LQG/LTR Procedure for Multivariable Feedback Control Design,” IEEE Transactions on Automatic Control, vol. 32, pp. 105-114, 1987.
    [12]G. F. Franklin, J. D. Powell, M. WorkMan, Digital Control of Dynamic Systems. Boston: Addison-Wesley Longman, 1997.
    [13]H. Kazerooni and R. Steger, “The Berkeley Lower Extremity Exoskeleton,” Trans. ASME, J. Dyn. Syst., Meas., Control, vol. 128, pp. 14-25, 2006.
    [14]H. Kawamoto and Y. Sankai, “Power Assist System HAL-3 for Gait Disorder Person,” in Proc. Int. Conf. Comput. Helping People Special Needs (ICCHP), vol. 2398, pp. 19-29, 2002.
    [15]H. Kawamoto, S. Lee, S. Kanbe, and Y. Sankai, “Power Assist Method for HAL-3 Using EMG-based Feedback Controller,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.vol. 2, pp. 1648-1653, 2003.
    [16]J. Rose and J. G. Gamble, Human Walking, 2nd ed. Baltimore, MD: Williams and Wilkins, 1994.
    [17]M. F. Eilenberg, H. Geyer, and H. Herr, “Control of a Powered Ankle-Foot Prosthesis Based on a Neuromuscular Model,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.18, pp. 164-173, 2010.
    [18]N. O. Lai, C. Edwards, and S. K. Spurgeon, “On Output Tracking Using Dynamic Output Feedback Discrete-Time Sliding-Mode Controllers,” IEEE Transactions on Automatic Control, vol. 52, pp. 1975-1981, 2007.
    [19]S. Hui and S. H. Z'ak, “On discrete-time variable structure sliding mode control,” Syst. Contr. Lett., vol. 38, pp. 283-288, 1999.
    [20]U. S. Army Research Laboratory, “2006 ARO in review,” U. S. Army Research Office, Adelphi, MD, 2006.
    [21]Z. Luca and R. T. Andrew, “A Common Framework for Anti-windup, Bumpless Transfer and Reliable Designs,” Automatica, pp. 1735-1744, 2002.
    [22]盧廷將,穿戴式下肢輔具動態控制與可攜性實現,碩士論文,國立清華大學動力機械工程學系,2008。
    [23]黃立成,下肢輔具之撓性桿件的分析與設計,碩士論文,國立清華大學動力機械工程學系,2007。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE